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ABSTRACT: 

Planetary rovers offer promising alternatives for conducting in-situ experiments on other planets. Considering the huge 

costs of such exploration missions, it becomes necessary to design an optimal mobility system configuration to meet the 

mission goals. In this paper, a constrained optimization procedure is presented to obtain optimal design parameters of 

rocker-bogie mobility system. More recently, researchers have proposed the idea of using reconfigurable wheels, which 

would be able to change their shape according to the terrain, to improve rover’s performance. One of the major 

challenges in implementation of such wheels is their control and autonomy. To avoid complex on-board calculations, 

the method of using look-up table for autonomously changing the wheel dimensions is proposed in this paper. For 

obtaining this look-up table, physics based motion dynamics simulation model is developed, incorporating the wheel-

soil contact mechanics and motion dynamics of the rocker bogie mobility system. The simulated motion of rocker bogie 

is found to be in conformance with the ground profile. Performance metrics like slip ratio, effective ground pressure 

and power consumption are evaluated through the motion simulations. Finally, a lookup table for autonomous shape 

changing wheels is presented for certain terrain characteristics. 
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1. Introduction 

In this age of space technology, robotic exploration of 

solar system has been at the forefront of various space 

agencies in the world. Moon and Mars have been 

particularly focused because of their proximity to Earth. 

The idea of sending a rover to the surface of another 

planet is to allow earth bound scientists to access 

specific areas of interest without enduring the harsh 

environments of space [1]. The mobility system of rover 

enables it to carry scientific instruments to various 

terrestrial formations for in-situ experimentation. 

Different types of mobility systems have been proposed 

[1-4]. Currently the most successful mobility system is 

the rocker-bogie suspension system used by NASA for 

all of its Mars rovers after Sojourner. The rocker-bogie 

suspension mechanism, along with a differential, enables 

a six-wheeled vehicle to passively keep all six wheels in 

contact with a surface even when driving on severely 

uneven terrain [3]. 

The performance of the mobility system is affected 

by the design parameters such as link lengths, wheel 

dimensions and center of mass. Therefore it is important 

to obtain optimal design parameters of the rocker bogie 

system. The performance of rocker bogie system is 

measured in terms of power consumption and effective 

ground pressure in this paper. The constraints on design 

parameters are obtained by evaluating the obstacle 

climbing capability and load equalization condition. 

Experiences with spirit and opportunity, the twin Mars 

Exploration Rovers, showed that one of the major issues 

that need to be addressed in order to expand the 

exploration capabilities of planetary rovers is that of 

wheel traction. The relationships governing how much 

traction a wheel can produce are highly dependent on 

both the shape of the wheel and terrain properties. In the 

past, it has always been a challenge to find the right 

balance between designing a rover wheel with high 

traction capabilities and low power requirements. More 

recently, researchers have investigated the concept of a 

reconfigurable wheel which would have the ability to 

change its shape to adapt to the type of terrain it was on 

[5]. In challenging terrain environments, the wheel could 

configure to a size that would maximize traction. In less 

challenging terrain environments, the wheel could 

configure to a size that would minimize power. To 

autonomously determine the appropriate size of the 

wheel for a given terrain a method of using look up table 

which can be accessed by the on-board controller is 

discussed in this paper. 

2. Rocker bogie design optimization 

2.1. Design variables 

Two sides of the rover are identical in the rocker-bogie 

suspension system. Thus for design optimization 
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purpose, single side of the rocker-bogie system is 

focused. The following ten parameters are used to define 

the dimensions of single side of the rocker-bogie system. 

 Co-ordinates of points A and B: xa, ya, xb, yb  

 Co-ordinates of center of mass of rover: xg, yg 

 Radius and width of wheel: r, b 

 Distances between wheel centers: x1, x2 

The parameters are shown in Fig. 1, where ‘c’ is the 

length required for mounting the on-spot turning motors 

above front and back wheels, which is assumed to be 

almost equal to radius of the wheel r to simplify the 

calculations. 
 

 

Fig. 1: Design variables for single side of rocker-bogie suspension 

system 

2.2. Evaluation of performance metrics and 

design constraints  

Metrics for evaluating planetary rovers provide means to 

assign numerical values to a system’s capabilities. 

Numerous metrics have been proposed and used in 

literature such as mass, volume, system complexity, 

power consumption, terrain traversing capability, 

traction, toppling stability etc. [4]. Power consumption is 

an important factor as it has direct impact on the choice 

of electronic components and energy source. Effective 

ground pressure, which is a measure of average pressure 

exerted by wheel on ground, is important as the rover 

has to be designed to safely operate on soft terrain. 

Rovers are expected to travel over extremely uneven 

terrain. Thus terrain traversing capability or obstacle 

negotiability conditions impose constraints on design 

parameters. Ensuring equal load on each wheel is also 

important as heavier load on a single wheel might cause 

it to go deep in the soil. 

2.2.1. Power consumption 

The total power consumption of rover includes the 

power consumed by driving motors, steering motors and 

other payloads as follows, 

payloadssteeringsdrivingwtotal PPNPNP    (1) 

Where Nw - No of wheels and Ns - No of independently 

steered wheels, Payload power consumption is 

independent of suspension design parameters, so it is 

taken as a constant. Steering motors are powered only 

during turning motion. Assuming the rover is moving 

along a straight trajectory (no turning), the total power 

consumption of rover is given by: 

payloadsdrivingwtotal PPNP     (2) 

The power consumption of driving motor is given by [6]: 

gearboxmotorampli

wheelwheel
drivingP








    (3) 

wheeltotalwheel rR      (4) 

wheelroverwheel rv     (5) 

where wheel - Driving motor torque, wheel - Wheel 

angular speed, rwheel - Wheel radius, vrover - Forward 

speed of rover, ampli - Amplifier efficiency, mot - Motor 

efficiency and gear - Gearbox efficiency. For simplifying 

the calculations all efficiencies are assumed to be 

constant. 

In Eqn. (4), the total motion resistance Rtotal is used 

to compute the wheel torque. It depends upon the wheel 

dimensions, wheel-soil interaction and terrain 

conditions. In most of the planetary rovers, wheels are 

generally metallic and their deflection under static 

loading is much lower than the deformation of 

soil/terrain. So the model of a ‘Rigid wheel travelling 

over deformable terrain’ [7] is suitable for this condition. 

In this model, the rolling resistance is neglected as the 

deformation of wheel is very small. Motion resistance of 

tire consists of the compaction resistance and the 

bulldozing resistance. Compaction resistance (Rc), 

represents the resistance due to terrain deformation, is 

using [8], 
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When a substantial soil mass is displaced by a wheel, the 

developed bulldozing resistance (Rb) is given as [8], 

 pypcb kzkzcbR  25.0   (7) 

where z is the static sinkage of the wheel given by, 
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where b - Width of wheel, kc, kf, n - Pressure sinkage 

parameters of the specific terrain, W - Normal load on 

wheel, D - Wheel Diameter, c - Cohesion, kpc, kpy - 

Terzaghi soil factors [9] and  - Soil density. 

Apart from the resistances to motion of wheel, the 

rover encounters gravitational resistance (Rg) while 

climbing a slope, given as the projection of weight on 

the slope using, 

  wmarstotalg NgMR sin    (9) 

where Mtotal - Total mass of rover, gmars - Acceleration 

due to gravity on mars = 3.711 m/s
2
 and  - Slope angle. 

The mass of chassis, payload and motors will be much 

greater than the mass of wheels and suspension links. 

Therefore for simplifying the design optimization 

calculations, the total mass of rover can be assumed to 

be independent of design parameters. 

2.2.2. Effective ground pressure 

Effective ground pressure (EGP) is defined as the 

average pressure under the average wheel. The average 

weight on a wheel is first found by dividing the total 

vehicle weight on a planetary body by the number of 

wheels. The EGP is found by dividing the average 

weight by the cross sectional area of the wheel’s contact 

patch on the ground plane [10] using, 

wmarstotal NgMwheelperweightAverage            (10) 
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brN

gM
EGP

wheelw

marstotal                 (11) 

where Mtotal - Total mass of rover, gmars - Acceleration 

due to gravity on mars = 3.711 m/s
2
, Nw - Number of 

wheels, rwheel - Wheel radius and b - Width of wheel. 

2.2.3. Obstacle negotiability 

The geometric manoeuvre of the rover is decided by the 

terrain geometry and the suspension parameters 

including the ground clearance of chassis. As shown in 

Fig. 2 and Fig. 3, two cases have been analysed: 

Case 1: The rover is climbing over a step of height ‘h’, 

middle and front wheels have successfully climbed over 

the step and rear wheel has just contacted with the 

vertical face of barrier. Substituting the design variables 

in geometry relations from Fig. 2, 
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Case 2: The rover is climbing over an obstacle of height 

‘h2’ and width ‘w’, middle wheel has just overcome the 

obstacle and landed on horizontal surface. Substituting 

the design variables in geometry relations from Fig. 3, 

  
01 


 r

r

xxrh
y b

b                (13) 

rwx 22                   (14) 

Also the ground clearance i.e. height of point ‘A’, should 

be greater than yb as, 

0 ba yy                  (15) 

Thus the Eqns. (12) to (15) give the constraints on the 

design parameters for given obstacle dimensions and 

vertical step height. 
 

 

Fig. 2: Bogie intersecting the vertical step 

 

Fig. 3: Bogie intersecting the obstacle 

2.2.4. Load equalization 

Fig. 4 shows the external forces on single side of rocker 

bogie on flat ground. The force balance condition along 

vertical direction is given by, 

gcFNNN  321                 (16) 

Similarly the moment balance condition about the 

central axis of front wheel is given by, 

  gcgc xFxNxxN  12211                (17) 

Since point B is a free pivot, it cannot transfer axial 

torque. The moment balance equation of bogie about 

point B is given by, 

   bb xxxNxxN  21112                (18) 

For load equalization N1 = N2 = N3. Substituting this in 

above equations we obtain following relations between 

the design parameters, 

221 xxxb                   (19) 

3)2( 21 xxx gc                  (20) 

 

 

Fig. 4: Static model of single side of rocker bogie 

2.3. Optimization  

For simplifying the calculations, the ground profile on 

which rover is moving is assumed to be flat. Nw - 

Number of independently driven wheels, Vrover - Average 

velocity of Rover, h - Efficiency of driving motors, Lrover 

- Length of rover, Wrover - Weight of rover and g - 

Acceleration due to gravity The soil properties for 

calculation of driving power are based on the results for 

Martian soil simulants [11] and are given in Table 2. 

Table 1: Optimization scenario 

Nw Vrover  Lrover Wrover g 

6 0.01m/s 0.9 3m 900kg 3.8m/s2 

Table 2: Soil properties 

Parameter Value Parameter Value 

 (kg/m3) 540  29.48 

n 0.67 Nc 27.86 

kc (kPa/mn-1) 67.28 Nq 16.44 

kf (kPa/mn) 0.68 N 19.34 

 (deg) 29.48 kpc 20.68 

c (kPa) 1.33 kpy 52.61 

 

The objective function to be minimized is defined as 

the weighted sum of power consumption and EGP as, 
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With constraints in Eqns. (12) – (15), (19) and (20), wp 

and wegp are normalizing factors which allow power 

consumption and EGP to be brought to a similar range. 

The constrained global optimization is carried out using 

‘Nelder Mead’ method available in MATHEMATICA 

[12]. Fig. 5 shows the variation of objective function for 

different values of w1. We assume w1 to be 0.5, which 

signifies that minimizing power consumption and 

minimizing ground pressure are given equal importance 

in the design. The results of optimization are given in 

Table 3. 

 

 

Fig. 5: Variation of objective function for different weighing 

factors 

Table 3: Optimized design parameters 

Parameter Value Parameter Value 

x1 1.125 b 0.1859 

x2 1.125 xa xa < 1.2 

r 0.375 ya ya > yb 

xb 1.8 yb yb > 0.9 

xg 1.2 Obj. Function 10.79 

3. Wheel-soil contact model based on 

terramechanics approach 

3.1. Slip ratio  

Slips are generally observed when a rover travels on 

loose soil. The slip in the longitudinal direction is 

expressed by the slip ratio using, 
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Where v  longitudinal travelling velocity of the wheel, 

r circumference velocity of the wheel, r is the wheel 

radius and  angular velocity of the wheel. The slip ratio 

assumes a value in the range from -1 to 1. When the slip 

ratio is -1 or 1, it indicates that the wheel has stopped 

moving forward/backward and is slipping in its place. 

When the slip ratio is zero, then it indicates a pure 

rolling motion. 

3.2. Static wheel sinkage  

When the rover is stationary, the vertical load on each 

wheel determines its static sinkage. According to the 

equation formulated by Bekker [13], the static stress ph 

generated under a flat plate, which has a sinkage h and 

width b is calculated as follows, 
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where kc and kphi represent pressure sinkage modules and 

n is the sinkage exponent. As shown in Fig. 6, for a rigid 

wheel over deformable terrain, the following formulae 

can be derived. First, the wheel sinkage h() at an 

arbitrary angle  is geometrically given, 

   srh  coscos                  (23) 

where s is the static contact angle. Substituting the Eqn. 

(23) into Eqn. (22), we obtain the variation of pressure p 

with  as, 
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The static contact angle s is numerically obtained by 

solving the following equation when the vertical load W 

is known as, 
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Finally the static sinkage hs is derived as follows: 

 ss rh cos1                 (26) 

 

 

Fig. 6: Static sinkage for rigid wheel over deformable terrain [14] 

3.3. Wheel contact angles and stress distribution 

for rotating wheel 

Fig. 7 shows the model of a rotating rigid wheel on 

deformable terrain. The angle from the vertical to the 

point where the wheel initially makes contact with the 

soil is defined as the forward angle f. Similarly the 

angle from the vertical to the point where the wheel 

departs from the soil is defined as the rear angle r. The 

wheel contact patch on loose soil is defined by the region 

from f to r. As shown in Fig.7, the forward angle f is 

expressed as a function of h: 
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The rear angle r is modelled by using the wheel sinkage 

ratio , which denotes the ratio between the front and the 

rear sinkages of the wheel as follows, 
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The value of  depends on the soil characteristics, wheel 

surface pattern and slip ratio. It decreases below 1.0 

when soil compaction occurs, but can be greater than 1.0 

when the soil is dug by the wheel and transported to the 

region behind the wheel. The value of  is 1 when the 

slip ratio is zero and wheel is placed over flat terrain. 

The stress field below the wheel can be divided into two 

parts: normal stress distribution and shear stress 

distribution. The normal stress distribution is given by 

the following equation [15]. The normal stress is 

maximized at a specific angle m given by, 

  fm saa  10                  (30) 

where a0 and a1 are parameters that depend on the wheel-

soil interaction. Their values are generally assumed as a0 

 0.4 and 0 ≤ a1≤  0:3 [16]. The shear stress distribution 

() is given by [8], 
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where c represents the cohesion stress of the soil,  is the 

internal friction angle of the soil and k is the shear 

deformation module. 
 

 

Fig. 7: Wheel contact angle and stress model 

3.4. Resultant forces and torque 

The normal and shear stress distributions below the 

wheel can be converted into resultant forces and torque 

acting at the wheel center. The net force in x-direction is 

called as the ‘Drawbar Pull’. The expression for drawbar 

pull is obtained from the () and () [16] using, 

      f

r
drbFx




 sincos               (32) 

The net-force in y-direction is called as the ‘Vertical 

Force’ and given by Eq.32 [16] 
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r
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


 cossin               (33) 

The shear stress distribution results in a net torque about 

the axis of rotation of the wheel passing through the 

wheel center which is given by, 

  f

r
dbrT




2                 (34) 

4. Rocker bogie modelling 

4.1. Simplified system model & design parameters 

For simplified calculations, this work focuses on design 

optimization and motion dynamics of single side of the 

rocker bogie suspension. The analysis is valid for cases 

where the ground profile on either side of the rover is 

identical. Thus the roll and yaw motions of the chassis 

are neglected. Even though this assumption may not be 

true in natural terrain, it allows us to analyse the effect of 

change in design parameters on rover’s performance 

metrics, which is the motivation behind this work. The 

simplified model of a single side of the rocker-bogie is 

shown in Fig. 8. 
 

 

Fig. 8: 2D model of rocker bogie system 

4.2. Motion dynamics 

Fig. 9 shows the free body diagram (FBD) of the rover 

for any given configuration. Fxi and Fyi are the forces in x 

and y direction respectively, Mi are the moments about 

z-direction (out of plane), mi are the mean contact 

angles. Since the rocker is connected to the bogie 

through a pin joint at point B, no axial torque is 

transmitted through the pivot B. We can consider the 

system to be made up of two rigid bodies: Rocker + 

Chassis and Bogie, connected to each other through a pin 

joint as shown in Fig. 10 and Fig. 11. 
 

 

Fig. 9: Force analysis 

 

Fig. 10: Rigid body 1: Rocker + Chassis 

 

Fig. 11: Rigid body 2: Bogie 
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The motion of any rigid body can be defined as the 

combination of linear motion of its center of mass and 

rotation of the body about its center of mass. Thus 

forward dynamics equations are derived for both these 

rigid bodies, by considering the accelerations of center 

of mass and angular acceleration about center of mass as 

the unknown parameters. The equations for 

rocker+chassis as follows, 

3xxcrcr FFxaw                  (35) 

gwFFyaw cryycrcr  3
               (36) 

 
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where wrc - Weight of rocker and chassis, axrc, ayrc - 

Acceleration of center of mass of rocker and chassis in 

x-direction and y-directions, Irc - Moment of inertia of 

rocker and chassis about its center of mass and rc - 

Angular acceleration of rocker and chassis about its 

center of mass. The equations for bogie are as follows, 
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where wbogie - Weight of bogie, axbogie, aybogie - 

Acceleration of center of mass of bogie in x-direction 

and y-directions, Ibogie - Moment of inertia of bogie about 

its center of mass and bogie - Angular acceleration of 

bogie about its center of mass. 

The velocity components of any point in bogie along 

x and y directions can be given in terms of the velocity 

of its center of mass and the angular velocity about its 

center of mass as follows, 

 yyvv boigecgboigeboigecgxx  __                (41) 

 xxvv boigecgboigeboigecgyy  __                 (42) 

where x, y - Position of any arbitrary point in bogie vx, 

vy - Velocity of that arbitrary point in bogie, xcg_bogie, 

ycg_bogie - Position of center of mass of bogie, vx_cgbogie, 

vy_cgbogie - Velocity of center of mass of bogie and bogie - 

Angular velocity of bogie about its center of mass. 

Differentiating Eqns. (35) to (46) with respect to time we 

obtain the relation between acceleration of any point in 

bogie and rocket-chassis as follows, 

 
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Since the point B is common to both the bodies, we 

obtain following equations by Eqn. (43) with Eqn. (45) 

and Eqn. (44) with Eqn. (46) for x = xb & y = yb as, 

 
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 
 

   bycgrcyrcbrccg

rccgrcybxboigecgxboige

bboigecgboigeboigecgy

vvxx

avv

xxa

___

___

__













              (48) 

So we now have 8 linear equations: Eqns. (35) to (40), 

Eqns. (47) and (48) with 8 unknowns viz. Fx, Fy, rc, 

bogie, axrc, ayrc, axbogie, and aybogie. The solution of this 

system of equations is substituted in Eqns. (43) to (46) to 

get the accelerations of wheel centers, bogie pivot point 

B and rocker-chassis pivot point A. During the motion of 

rover, one or more wheels can lose contact with ground. 

This scenario has also been taken care of in the 

simulation model by substituting the wheel sinkage and 

resultant forces on corresponding wheels as zero in the 

dynamics equations. 

4.3. Static load distribution 

For calculating the initial sinkages of wheels, we need to 

obtain the initial load on each wheel when the rover is at 

rest. The static equilibrium equations are obtained by 

neglecting the acceleration, drawbar pull and resultant 

moment in Eqns. (35) to (40) as follows, 

0xF                  (49) 

03  gwFF cryy
                (50) 

    0__33  rccgbyrccgy xxFxxF               (51) 

0xF                  (52) 

0 gwF boigey
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xxF

xxFxxF
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By solving this system of linear equations we can obtain 

the vertical load on each wheel i.e. Fy1, Fy2, Fy3 in terms 

of the design parameters and weight data. 

5. Forward dynamics simulation 

The dynamic motion simulation model for the rocker 

bogie suspension system is implemented in MATLAB 

for numerical computations. Fig. 12 shows the 

computational flow of the motion dynamics simulation 

tool. For presentation of sample results, the motion 

dynamics simulation tool is tested using design 

parameters and following terrain profiles: 

1. Horizontal flat ground 

2. Straight incline of 20 degrees 

3. Obstacle modelled by a sinusoidal profile 

As shown in Fig. 13 for flat terrain the motion of wheel 

center and pivot points of rocker-bogie system is in 
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conformance with the ground profile. In this scenario, 

initially the rover is kept at rest and sudden torque is 

applied by the drive motors in the beginning. This results 

in initial slippage as depicted in Fig. 14. 
 

 

Fig. 12: Computational flow of motion dynamics simulation tool 

 

Fig. 13: Flat Terrain: Plot of ground profile and displacements of 

wheel centers, bogie pivot and rocker pivot 

 

Fig. 14: Flat terrain: Plot of slip ratio vs. Number of iterations 

(initially rover is at rest) 

The slip ratio converges to a near zero value in 

steady state. If the rover is initially said to be moving at 

a constant velocity, the slip ratio remains at a near zero 

value, as shown in Fig. 15. The motion of front wheel 

over inclination of 20 degrees is depicted in Fig. 16. In 

this scenario, initially the rover is assumed to travel with 

a constant velocity. Thus the slip ratio is initially zero, 

but as the front wheel starts climbing over the slope, its 

slip ratio increases to a magnitude of 0.2 as shown in 

Fig.17. The motion of rover over an obstacle of height 

15cm modelled using sinusoidal ground profile is 

depicted in Fig. 18. In this scenario, initially the rover is 

assumed to travel with a constant velocity. Thus the slip 

ratio is initially zero, but as the front wheel starts 

climbing over the slope, the magnitude of its slip ratio 

(s3) increases to 0.2. Later when the middle wheel starts 

climbing the obstacle, the slip ratios of both middle and 

rear wheels increase to a magnitude of about 0.2, while 

the slip ratio of front wheel increases further to a 

magnitude of about 0.3 as shown in Fig. 19. 
 

 

Fig. 15: Flat terrain: Plot of slip ratio vs. Number of iterations 

(initially rover is moving with constant velocity) 

 

Fig. 16: Incline: Plot of ground profile and displacements of wheel 

centers, bogie pivot and rocker pivot 

 

Fig. 17: Incline: Plot of slip ratio vs. Number of iterations 

 

Fig. 18: Obstacle: Plot of ground profile and displacements of 

wheel centers, bogie pivot and rocker pivot 
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Fig. 19: Obstacle: plot of slip ratio vs. Number of iterations 

6. Application of simulation tool to 

reconfigurable wheels 

Various mechanisms have been proposed for shape 

changing or reconfigurable wheels. One such 

reconfigurable wheel prototype was developed at 

Massachusetts Institute of Technology [5]. In this 

prototype, the wheel consists of spring steel strips and 

wire mesh. The strips are attached to two hubcaps 

connected by a linear actuator. Thus when the linear 

actuator moves, the strips buckle and there is a change in 

wheel dimensions. Increase in wheel radius is 

accompanied by decrease in wheel width, whereas 

decrease in wheel radius is accompanied by increase in 

wheel width. A method of using a wheel with similar 

characteristics has been suggested in this paper. One of 

the major challenges in implementation of 

reconfigurable wheel is autonomy and control. The 

wheel should be able to autonomously change its shape 

based on the terrain characteristics on which it is 

moving. Some researchers have developed methods for 

online terrain characterization of the rover[16]. Using 

these techniques we can estimate the soil characteristics 

of the terrain on which the rover is moving. To estimate 

the terrain profile, vision based techniques have been 

proposed [17]. The terrain characteristics can be given as 

input to the dynamic simulation model developed in this 

work. By simulating the performance of rover for 

different wheel dimensions, we can get the optimum 

values of wheel dimensions for given terrain. The results 

of simulation can be converted into look-up tables and 

fed into the onboard rover software. Thus whenever a 

particular type of terrain is encountered the on-board 

controller will be able to devise the optimum wheel 

dimensions using these look up tables. The advantage of 

this method is a significant reduction in on-board 

computation. 

For testing the effectiveness of this approach, some 

test scenarios have been considered in this section. The 

terrain characteristics for these scenarios are given in 

Table 4, while the soil properties for different soil types 

are given in Table 5. The wheel dimensions considered 

for this exercise are: 

 Set 1: Wheel diameter = 0.13m, Wheel width = 

0.22m (Min. radius) 

 Set 2: Wheel diameter = 0.15m, Wheel width = 

0.20m (Mean radius)  

 Set 3: Wheel diameter = 0.17m, Wheel width = 

0.18m (Max. radius)  

For all the test scenarios and wheel dimension sets, the 

performance metrics: Slip ratio, power consumption and 

effective ground pressure are evaluated and listed in 

Table 6. 

Table 4: Terrain characteristics for test scenarios 

Test scenario Terrain profile Soil type 

1 Upward slope of 20deg Dry sand 

2 Upward slope of 20deg Sandy loam 

3 Upward slope of 20deg Clayey Soil 

4 
Sinusoidal bump of height 

15cm 
Dry sand 

5 
Sinusoidal bump of height 

15cm 
Sandy loam 

6 
Sinusoidal bump of height 

15cm 
Clayey soil 

Table 5: Soil Parameter for various soil types [17] 

 Dry Sand Sandy Loam Clayey Soil 

n 1.1 0.7 0.5 

c(N/m2) 1000 1700 4140 

(deg) 30 29 13 

kc(Pa/mn-1) 900 5300 13200 

kphi(Pa/mn) 1523400 1515000 692200 

k(m) 0.025 0.025 0.01 

Table 6: Values of performance metrics for test scenarios 

Wheel 

Configuration  

Test 

scenario 
Slip ratio 

Effective 
ground 

pressure 

(N/m2) 

Power 
consumption

(W) 

Radius = 0.13m 
Width = 0.22m 

1 0.22 3017 7.988 

2 0.5755 2806 5.256 

3 0.7936 2671 7.27 

4 0.2234 3048 8.64 

5 0.7263 2626 5.844 

6 0.8826 2758 7.814 

Radius = 0.15m 

Width = 0.20m 

1 0.1857 3001 9.797 

2 0.5514 2999 7.55 

3 0.7073 2963 8.399 

4 0.1962 2995 9.688 

5 0.629 2898 7.8 

6 0.89 3093 10.15 

Radius = 0.17m 
Width = 0.18m 

1 0.157 3096 10.608 

2 0.4541 3076 9.89 

3 0.7025 2816 11.211 

4 0.1329 3138 10.592 

5 0.6066 3017 11.587 

6 0.8588 2956 14.158 

For all three performance metrics, a lower value 

indicates better performance. Thus for each test scenario, 

a ‘Goodness Parameter’ is assigned to each wheel 

configuration. The wheel configuration with lowest 

value of a performance metric is assigned a ‘Goodness 

Parameter’ of 100 for each test scenario. For other wheel 

configurations, ‘Goodness Parameters’ are defined as the 

ratio of difference between the value of performance 

metric for that wheel configuration and the lowest value 

of performance metric amongst the possible wheel 

configurations to the lowest value of performance metric 

amongst possible wheel configurations. The sum of 

goodness parameters for any scenario gives the ‘Total 

Goodness Value’ of each wheel configuration for given 

scenario. Table 7 lists the total goodness values of each 
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wheel configuration. Based on the ‘Total Goodness 

Values’ we can develop look-up tables for selecting the 

best possible wheel configuration in given scenario. 

Table 8 shows the look up table developed for the test 

scenarios considered in this section. This look up table 

can be used in on-board rover software to obtain the 

dimensions of reconfigurable wheel for best 

performance. 

Table 7: Total goodness values for each wheel configuration in 

different scenarios 

Test 

Scenario 

Total goodness value 

Wheel 
configuration 1 

Wheel 
configuration 2 

Wheel 
configuration 3 

1 259 259.08 264 

2 273 228.49 202 

3 287 272.85 240 

4 230 240.23 273 

5 280 252.48 187 

6 297 254.33 212 

Table 8: Look up table for autonomous reconfiguration of wheel 

 Upward slope Obstacle 

Dry sand 
Wheel radius = 0.13m 

Wheel width = 0.22m 

Wheel radius = 0.13m 

Wheel width = 0.22m 

Sandy loam 
Wheel radius = 0.17m 

Wheel width = 0.18m 

Wheel radius = 0.17m 

Wheel width = 0.18m 

Clayey soil 
Wheel radius = 0.17m 

Wheel width = 0.18m 

Wheel radius = 0.17m 

Wheel width = 0.18m 

7. Conclusion 

In this paper, the design optimization of rocker bogie 

mobility system and development of lookup tables for 

autonomous reconfigurable wheels were presented. 

Through a constrained optimization procedure the 

optimal design parameters of rocker bogie suspension 

system were obtained. Next, a terramechanics based 

motion dynamics model was developed for the rocker 

bogie suspension system. Wheel-ground interaction 

models for rigid wheel on deformable terrain was 

discussed. A simulation tool was developed in 

MATLAB, incorporating the rigid wheel over 

deformable terrain contact model, drive motor 

characteristics and motion dynamics of rocker bogie 

suspension system. Sample test cases were presented for 

the simulation tool. The concept of reconfigurable 

wheels was discussed with reference to the effect of 

wheel dimensions on performance metrics of the 

mobility system for different terrains. The values of 

three performance metrics viz. slip ratio, power 

consumption and effective ground pressure, were 

obtained using the simulation tool for some test 

scenarios. Based on the results for different wheel 

configurations, a look up table was developed for 

autonomous re-configuration of wheel dimensions. The 

method of generating such look-up tables can be 

extended for different soil characteristics and different 

kinds of operating environment. 
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