
iGPS Based Motion Control of a Robotic Manipulator

using Robot Operating System

A Project Report

submitted by

ALAP KSHIRSAGAR

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

MECHANICAL DESIGN

DEPARTMENT OF MECHANICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 2017

THESIS CERTIFICATE

This is to certify that the thesis titled iGPS Based Motion Control of a Robotic Ma-

nipulator using Robot Operating System, submitted by Alap Kshirsagar, to the In-

dian Institute of Technology, Madras, for the award of the degree of Master of Tech-

nology in Mechanical Design, is a bona fide record of the research work done by him

under our supervision. The contents of this thesis, in full or in parts, have not been

submitted to any other Institute or University for the award of any degree or diploma.

Dr. Sourav Rakshit
Project Guide
Assistant Professor
Dept. of Mechanical Engineering
IIT-Madras, Chennai
India, 600036

Dr. B.V.S.S.S. Prasad
Head of the Department
Dept. of Mechanical Engineering
IIT-Madras, Chennai
India, 600036

Date : 9 May 2017

Place : Chennai

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude towards Dr. Sourav Rakshit and Dr.

Burkhard Corves for giving me the opportunity to pursue this joint-project work un-

der their guidance. Also I would like to thank the selection committee for providing me

the DAAD-IIT Master’s Sandwich Scholarship.

This project would not have been successful without the mentor-ship and valuable

inputs of Jorge De La Cruz. I would also like to thank Tim Detert, Tobias Haschke and

all other IGM-COAR group members for their constant help and contribution in this

work. I truly enjoyed working in this group and will be indebted to all of you eternally.

Last but not the least, I would like to thank my parents, brother and friends. They

are the greatest blessings I have been given in this life. I could never do enough to

sufficiently repay the unconditional love and support they have constantly bestowed

upon me.

Alap Kshirsagar

i

ABSTRACT

KEYWORDS: Indoor GPS; Robot Operating System; Robot Manipulator Control

Robotic manipulators have become the key components of industrial automation. The

accuracy of robotic manipulator’s end effector determines the quality of products and

dictates versatility of the system. Usually, the motion of the end effector is estimated

and controlled by using the encoder feedback only. But the resulting end effector tra-

jectory is inaccurate due to link deformations, joint flexibilities, external vibrations,

non-linearities of the gear mechanisms, manipulator dynamics etc. To overcome these

effects, the use of external sensor for direct measurement of end effector’s position and

orientation was proposed decades ago. Since then a lot of work has focussed on com-

puter vision based end effector control. But vision feedback is difficult to incorporate

into the control loop due to low sampling rate and delays.

In this work, a new technology called iGPS is used to get accurate measurements of

end effector’s position and orientation. Indoor-GPS or iGPS is a cutting edge metrology

system which allows monitoring several sensors simultaneously and has accuracy up to

±0.1mm for 3D positions. Also the latency for the iGPS system is lower than other

systems. Thus iGPS can be used for improving the accuracy of robotic manipulators.

In recent years, Robot Operating System has revolutionized the software development

process for novel robotics algorithms and applications. This open source framework fa-

cilitates modularity, customizability, extensions to multi-robot systems and global col-

laborations. Therefore, in this work ROS is chosen as the platform for establishing

communication between different components of the system and developing software

for iGPS feedback based robot motion control.

Three different control structures are presented for including the iGPS feedback in

the motion control system of a robotic manipulator. The motion control system consists

of motion planner, joint controller and the joint states publisher. The first approach in-

cludes iGPS feedback before the motion planning stage. The second approach involves

ii

iGPS correction in the joint state trajectory and the third approach includes iGPS feed-

back in the joint control loop through the joint states publisher. The last two approaches

require transformation from end-effector co-ordinates to joint states. These transformed

joint states can be fused with the encoder data to reduce error and overcome difficulties

arrising due to missing data. The use of Kalman Filter for fusion of multifrequency

and delayed sensor data is described. The structures for iGPS feedback based robot

motion control are implemented in the ROS framework and tested in a robot simulator

‘Gazebo’ and also on physical ‘Universal Robot-5’ manipulator. Results of conducted

experiments show that the error in end-effector trajectory can be reduced to 25% using

the iGPS feedback.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vii

LIST OF FIGURES ix

ABBREVIATIONS x

NOTATION xi

1 Introduction 1

1.1 Overview and Problem Statement 1

1.2 Motivation . 3

1.3 Project Goals . 4

1.4 Literature review . 4

1.5 Outline of Thesis . 9

2 Description of System Components 10

2.1 iGPS Technology . 10

2.1.1 Components of iGPS . 10

2.1.2 iGPS working principle . 15

2.1.3 Accuracy of iGPS . 16

2.2 Universal Robot-5 Manipulator . 16

2.2.1 Components of UR5 . 17

2.2.2 Specifications of UR5 . 17

2.2.3 Workspace of UR5 . 17

2.2.4 Communication with UR5 19

2.3 Robot Operating System . 20

2.3.1 Why ROS? . 21

iv

2.3.2 ROS Architechure . 21

2.3.3 Additional ROS tools . 23

2.4 Motion planning framework: MoveIt! 25

2.4.1 MoveIt! System Architecture 25

2.4.2 Motion Planners . 26

2.4.3 Collision Checking . 27

2.4.4 Time Parametrization . 27

2.4.5 Kinematics . 27

2.5 Summary . 28

3 Algorithms for iGPS feedback based robot motion control 29

3.1 Correction before motion planning stage 30

3.2 Correction in joint space trajectory 32

3.3 Feedback in joint control loop . 33

3.4 Kalman filter for fusion of multi-frequency and delayed sensor data 35

3.4.1 Discrete Kalman Filter . 36

3.4.2 Multifrequency data fusion using Kalman Filter 38

3.4.3 Fusion of multi-frequency and delayed sensor data using Kalman
Filter . 39

3.5 Summary . 40

4 Experimental Setup for iGPS feedback based control of UR5 manipula-
tor using ROS 41

4.1 Motion control of UR5 manipulator using ROS 41

4.2 UR5 motion control with iGPS feedback using ROS 43

4.2.1 Correction before motion planning stage 44

4.2.2 Correction in joint trajectory 45

4.2.3 Feedback in joint control loop 46

4.3 Summary . 46

5 Results 47

5.1 Comparison of iGPS and Camera 47

5.2 Kalman Filter Tests . 49

5.2.1 Discrete Kalman Filter . 49

v

5.2.2 Fusion of multifrequency sensor data using Kalman Filter . 49

5.2.3 Fusion of multi-frequency and delayed sensor data using Kalman
Filter . 51

5.2.4 Kalman Filter tuning for UR5 and iGPS 51

5.3 Evaluation of iGPS feedback correction before motion planning stage
algorithm . 55

5.4 Evaluation of iGPS feedback correction in joint space trajectory algo-
rithm . 60

5.5 Summary . 64

6 Conclusions and Future Work 65

6.1 Overall system . 65

6.2 Algorithms . 65

6.3 Implementation . 66

6.4 Experimental validation . 67

6.5 Possible applications . 68

6.6 Future improvements . 68

A Instructions to use the code 69

A.1 Pre-requisites . 69

A.2 Git branches in ur5 folder . 70

A.3 Running simulation in Gazebo . 70

A.4 Running the IGM-UR5 package on a real UR5 robot 71

A.5 User input . 72

REFERENCES 75

LIST OF TABLES

2.1 Technical specifications of UR5 manipulator 18

3.1 Description of variables in Discrete Kalman Filter equations 37

4.1 UR5 joint limits . 42

5.1 Comparison between iGPS and Kinect 48

5.2 Input parameters for Kalman filter tests (I=Identity matrix; Z = Zero
matrix) . 49

5.3 Sensor properties for discrete Kalman filter test (I=Identity matrix) . 49

5.4 Sensor properties for multi-frequency data fusion using Kalman filter
test (I=Identity matrix) . 49

5.5 Sensor properties for multi-frequency and delayed data fusion using
Kalman filter test (I=Identity matrix) 50

5.6 Properties of UR5 encoder data and iGPS data (IK solutions) 52

5.7 Error in Trajectory (Gazebo UR5 model) : Correction before motion
planning stage algorithm . 55

5.8 Error in Trajectory (Physical UR5) : Correction before motion planning
stage algorithm . 55

5.9 Error in Trajectory (Gazebo UR5 model) : Correction in joint state tra-
jectory algorithm . 60

5.10 Error in Trajectory (Physical UR5) : Correction in joint state trajectory
algorithm . 60

6.1 Results of simulation in Gazebo 67

6.2 Results of experiments with UR5 67

vii

LIST OF FIGURES

1.1 iGPS based control of a robot manipulator in ROS 3

1.2 Alternative structures for robot end effector control (Adapted from [1]) 6

1.3 Visual Servoing system configurations 8

2.1 iGPS transmitter (fixed) . 11

2.2 i6 Probe . 12

2.3 i6 LRP Probe . 13

2.4 i5 Probe . 13

2.5 Single Detectors with Mounts . 14

2.6 Main Server/PCE . 15

2.7 UR5 Manipulator . 17

2.8 Components of UR5 . 18

2.9 UR5 workspace (Figure courtesy [2]) 19

2.10 Graphical User Interface: PolyScope 20

2.11 Fundamental elements of ROS . 22

2.12 ROS visualization (rviz) Interface 23

2.13 Gazebo (Robot Simulator) Interface 24

2.14 MoveIt! system architecture (Figure courtesy [3]) 25

3.1 Robot motion control system . 29

3.2 Correction before motion planning stage 30

3.3 Illustration of motion planning stage correction method 31

3.4 Correction in joint space trajectory with Kalman Filter 32

3.5 Feedback in joint control stage . 34

3.6 Feedback in joint control stage with Kalman Filter 34

3.7 Discrete Kalman Filter algorithm 38

3.8 Multi-frequency data fusion using Kalman Filter 38

3.9 Classical method for fusion of delay and non-delay data (Figure cour-
tesy [4]) . 39

viii

4.1 iGPS feedback based control of UR5 manipulator using ROS 41

4.2 Experimental setup with UR5 manipulator and two i5 probes 44

5.1 Object tracking using camera . 47

5.2 Static position measurement error: Comparision between iGPS and
Kinect . 48

5.3 Discrete Kalman Filter . 50

5.4 Multifrequency sensor data fusion using Kalman Filter 51

5.5 Multifrequency and delayed sensor data fusion using Kalman Filter 52

5.6 Kalman Filter output of encoder joint angle measurements 53

5.7 Kalman Filter output of encoder joint velocity measurements 53

5.8 Kalman Filter output of IK joint angle solution of iGPS measurements 54

5.9 Kalman Filter output of iGPS and encoder data fusion 54

5.10 Gazebo simulation (Correction before motion planning stage) : 1-D end
effector trajectory . 57

5.11 UR5 test (iGPS Correction before motion planning stage) : 1-D end
effector trajectory . 59

5.12 Gazebo simulation (joint state trajectory correction) : 1-D end effector
trajectory . 62

5.13 UR5 test (iGPS Correction in joint state trajectory) : 1-D end effector
trajectory . 63

A.1 Directory tree . 70

ix

ABBREVIATIONS

IITM Indian Institute of Technology Madras

RWTH Rheinisch-Westfälische Technische Hochschule

IGM Institut für Getriebetechnik und Maschinendynamik

COAR Center of Advanced Robotics

ROS Robot Operating System

ROS-I Robot Operating System Industrial

API Application Programming Interface

UR5 Universal Robots-5

LRP Long Reach Probe

PCE Position Calculation Engine

DoF Degrees of Freedom

1-D One Dimensional

GPS Global Positioning System

iGPS Indoor GPS

URDF Unified Robot Description Format

SRDF Semantic Robot Description Format

XML Extensible Markup Language

OMPL Open Motion Planning Library

FCL Flexible Collision Library

ACM Allowed Collision Matrix

IPTP Iterative Parabolic Time Parametrization

KDL Kinematics and Dynamics Library

KF Kalman Filter

IK Inverse Kinematics

RMS Root Mean Square

x

NOTATION

T di Desired end effector pose

Jdi Desired joint state vector

P d
i Desired end effector position vector

Rd
i Desired end effector orientation matrix

T ai Actual end effector pose

Jai Actual joint state vector

P a
i Actual end effector position vector

Ra
i Actual end effector orientation matrix

T d∗i Corrected target end effector pose

Jd∗i Corrected target joint state vector

P d∗
i Corrected target end effector position vector

Rd∗
i Corrected target end effector orientation matrix

∆i Error in end effector pose

δi Error in joint state vector (also used for sensor delay)

xk State of the system k

x̂−k Priori state estimate at step k

A Matrix that relates the previous state and current state

B Matrix that relates the previous control input to current state

uk Control input at step k

wk Process noise at step k

zk Sensor measurement at step k

vk Sensor noise at step k

P−
k Priori estimate error covariance at step k

Q Process noise covariance

Kk Kalman gain

H Matrix that relates the state to sensor measurement

R Measurement noise covariance

x̂k Posteriori state estimate at step k

xi

Pk Posteriori estimate error covariance at step k

I Identity matrix

Z Zero matrix

f Frequency

T iGPS Pose in iGPS world frame

RiGPS Orientation in iGPS world frame

P iGPS Position in iGPS world frame

[τ]ur5iGPS Transformation matrix between iGPS world frame and UR5 world frame

TUR5 Pose in UR5 world frame

J Jacobian matrix

xii

CHAPTER 1

Introduction

This chapter will provide an overview of the project, problem statement, motivation

behind the research work and literature review. In the last section, the organization of

rest of the thesis will be presented.

1.1 Overview and Problem Statement

In this era of automation, robots have brought about a new wave of industrial revolution.

Robotic manipulators have replaced manual labour in a varied range of applications.

Today’s robotic manipulators are capable of performing repetitive tasks with a high

efficiency. This has increased the output while reducing the manufacturing costs.

End effectors of industrial manipulators have to follow specific trajectories or reach

destination points with high accuracy and speed. The motion of the end effector is usu-

ally estimated from the joint state feedback by using a robot model. There are several

ways of improving the accuracy of a robot manipulator. A lot of research has been done

on improving the accuracy of robotic manipulation either by using advanced control

algorithms for accurately controlling individual joints or by accurately modelling the

kinematic and dynamic parameters of the physical robot. However, almost all of the

control approaches use only the joint state feedback from encoders attached to motors.

Most of the industrial robots use gear mechanisms to drive each joint. Due to these

gear mechanisms of high reduction ratio, every joint becomes a flexible joint. Also

each link of the robot is usually modelled as a rigid body. But in reality there are link

deformations due to gravitational load and applied load (in the form of objects attached

to the end effector). Thus the actual trajectory followed by the end-effector does not

match accurately with the desired trajectory. Other factors that also contribute to the

inaccuracy are external vibrations, non-linearities of the gear mechanisms, manipulator

dynamics etc.

One of the proposed solutions in literature to counter these physical effects is the

direct feedback of the end-effector’s position and orientation (referred to as ‘pose’ here-

after for simplicity) [1]. Researchers have explored various alternatives for direct mea-

surement of the end-effector’s pose. Some of these include cameras, laser trackers,

ultrasonic range finders, inertial sensors and position sensitive detectors. Computer

vision based method is recognized as a promising choice. But due to low sampling

rate and additional delays of the vision system, it is difficult to incorporate the vision

measurements in the joint control loop [5].

In recent years, a metrology system called ‘iGPS’ or ‘indoor GPS’ has been proven

to be useful for obtaining ‘real-time’ six degree of freedom (6DoF) data about pose of

the end-effector or any other point on robot [6]. The accuracy of iGPS system is 200µm

for 3D positions [7]. Also the sampling rate of iGPS system is much higher than that

of a vision based system. This enables the use of iGPS measurements of end effector’s

pose in the motion control loop of a robotic manipulator.

Traditionally, the robotic manipulators have been controlled using the motion con-

trol packages supplied by the manufacturer. These packages are proprietary and differ

drastically from manufacturer to manufacturer. Thus the software development car-

ried out for a particular manipulator cannot be easily extended to other manipulators.

Also the OEM motion control packages have their own set of operations which are not

customizable.

The use of Open Source platform for robot software development facilitates modu-

larity, customizability, extensions to multi-robot systems and global collaborations. In

recent years, Robot Operating System (ROS) has become a de facto standard platform

for open source software development in robotics [8]. Researchers from all over the

world are developing ROS packages and tools for rapid development of novel robotics

applications. ROS-Industrial project is extending the advanced capabilities of ROS soft-

ware to manufacturing.

The different components of the system are shown in Fig. 1.1. The problem state-

ment for this research work is: how can we use iGPS to improve the accuracy of robot

motion in a ROS framework?

2

Figure 1.1: iGPS based control of a robot manipulator in ROS

1.2 Motivation

The advances in computational power and robot architectures have opened new avenues

of manufacturing applications. One such novel application is 3D printing. This rapid

prototyping technique has revolutionized the manufacturing industry. Apart from con-

ventional uses of 3D printing such as printing spare parts, scale models and art, 3D

printing is also being used by medical industry for prostheses and even human body

parts. Researchers have proposed the use of multiple degree of freedom robotic manip-

ulators for 3D printing [9]. The benefits include reduced printing time and increased

versatility. However the robot motion accuracy needs to be improved for realizing these

benefits. The use of advanced control algorithms relies on the accuracy of kinematic

model of the robot. Improving the robot motion accuracy through direct measurement

of end-effector will enable use of 3D printing to make final products ready for the mar-

ket.

Another application which requires high positioning accuracy of robot manipulators

is manipulation of small deformable objects like thin cables and wires. Researchers

have developed various algorithms to obtain trajectories for manipulating deformable

objects to desired configurations from different initial configurations [10]. However the

objects are not exactly manipulated as desired because the actual trajectory followed by

the end-effector is inaccurate due to the joint flexibilities, link deformations, vibrations

3

and other external disturbances.

In advanced manufacturing systems, multiple robots collaborate with each other,

and sometimes even with humans, to accomplish complex tasks. While today’s indus-

trial robots have very good repeatability, the absolute accuracy of co-operating robots is

not so good. Different factors such as hardware and software limitations, manufacturing

tolerances, payload effects, compliance, elasticity and thermal effects contribute to this

inaccuracy. External metrology systems like iGPS provide a way of compensating for

these errors and improving cooperative robot positioning [11].

Open source software development for external sensor feedback based control of

robot manipulators will allow global collaborations, applications to different tasks and

extensions to multi-robot scenarios. Also the modularity and customizability of the

software will enable comparison between different algorithms for individual modules

as well as for the overall approach.

1.3 Project Goals

The primary objective of this project is to use iGPS feedback for accurate motion control

of robotic manipulator in a ROS framework. This can be divided into following sub-

goals:

1. Devise algorithms for iGPS feedback based control of robotic manipulators

2. Develop ROS packages for integration of iGPS in robot motion control system

3. Compare accuracy of iGPS and computer vision system

4. Evaluate end-effector feedback based control algorithms in robot simulator

5. Evaluate performance of the iGPS based control algorithms on industrial manip-
ulator

1.4 Literature review

The idea of using direct measurement of end-effector’s pose in robot motion control

loop was proposed decades ago [1]. In their work, the authors have described two

algorithms for end-effector sensor feedback control as shown in Fig.1.2. In the first

4

algorithm (Fig.1.2b), the sensor feedback is given to the motion processor. The motion

processor then sends the corrective commands to the joint control module. The second

approach (Fig.1.2c) uses the end-effector pose feedback directly in the joint control

module by transforming it from end-effector co-ordinates to joint angle co-ordinates.

Since this work, a lot of research has been done on exploring different sensors for direct

measurement of end-effector’s pose.

The desired features of a metrology system which can be used for applications of

robots in industrial automation are: high accuracy and large workspace volume. Also

the system should be capable of measuring all six degrees of freedom, preferably of

multiple points or features. Several approaches have been developed for such metrology

systems which can be broadly catergorized into two types [12]:

1. Centralized Systems: Stand-alone systems that can work independently

2. Distributed Systems: Systems with multiple measuring stations that have to work
co-operatively

The most popular example of centralized system is a laser tracker which can track

only individual points. The laser trackers pose a risk of interruption of production pro-

cess due to loss of laser line visibility. Also for tracking multiple degrees of freedom,

data fusion of several laser trackers is required. Computer vision based measuring sys-

tems are the most popular distributed systems for many scientific and industrial appli-

cations. They are capable of tracking several objects in the visible space of the cameras.

However, the accuracy of camera depends heavily upon the number of pixels and dis-

tance of the object from camera. If the distance is large, the markers or tracked features

on objects also need to be larger in size. This poses difficulties in extending camera

systems for applications in large production halls and assembly lines.

Indoor GPS (iGPS) is a scalable measurement concept that converts a workspace

into a metrology enabled work volume. The operation of an iGPS system is compara-

ble to a global positioning system (GPS), but it is designed for industrial applications

on a facility-wide scale. GPS satellites are replaced by infrared iGPS laser transmitters

that activate a measurement field as large as an entire room or facility. iGPS features ac-

curacies that are roughly a hundred thousand times higher than consumer GPS systems.

Tools, parts, probes and equipment, such as AGVs, can be equipped with iGPS receivers

that are tracked by the transmitters. As such, positions can be measured or dynamically

5

(a) Open loop

(b) Motion Processor loop

(c) Axis Processor loop

Figure 1.2: Alternative structures for robot end effector control (Adapted from [1])

6

tracked with a high degree of confidence in order to provide accurate metrology data

or to facilitate tracking and positioning applications. To obtain accurate positioning,

receivers need line-of-sight from minimum 2 transmitter fields. Adding more transmit-

ters enlarges the measurement area, improves robustness by guaranteeing line-of-sight,

and further increases measurement accuracy. iGPS is a flexible metrology solution that

offers full freedom of operation for indoor and outdoor use. The iSpace systems are

standardized configurations built with iGPS components focusing on ease of installa-

tion and use [7].

Computer vision based motion control of robotic manipulators, commonly known

as ‘visual servoing’ [13], has been researched extensively. The two main fundamentally

different configurations that exist for a visual servoing system are [14]:

1. Eye-in-hand

2. Eye-to-hand or stand-alone

In a eye-in-hand configuration [15] [16], the camera is attached to the end-effector

of robotic manipulator and moves along with it, as shown in Fig.1.3a. Whereas in a

eye-to-hand configuration, as shown in Fig.1.3b, the camera is fixed on the ground and

tracks the motion of end effector [17], [18][19]. The major drawback of vision based

approach is the slow sampling rate which makes it difficult to include this feedback into

the joint control loop running at a much higher frequency [5].

External metrology systems offer an alternative to the vision based approaches.

These include coordinate measuring machines, laster trackers, iGPS, ultrasound sys-

tems etc.[20]. The iGPS system offered by Nikon can be used to track multiple sensors

simultaneously with an accuracy of 200µm [7]. Wang et al. [21] determined that for

speeds below 10 cm/s, the iGPS is capable of producing relatively repeatable tracking

data. Schmitt et al. [6] tested various layouts of iGPS transmitters and concluded that

the ’Standard layout’ advised by the manufacturer provided best measurement results.

Norman et. al [22] used the iGPS metrology system for absolute positioning and move-

ment of the cooperating robots. Schmitt et al. [23] implemented a very basic control

loop for accurate motion of robot manipulator at slow speeds (0.1m/s) and also pro-

posed the use of kalman filter to extend this method to higher speeds. Norman et al.

[11] presented a validation of iGPS technology for co-operative robot positioning by

comparing with the ballbar measurements.

7

(a) Eye-in-hand

(b) Eye-to-hand

Figure 1.3: Visual Servoing system configurations

8

But all the efforts done so far for iGPS based control of robotic manipulators have

used commercial KUKA motion control packages. This poses limitations on the mod-

ularity and customizability of the control approaches. Also it is difficult to extend this

work to robots of different manufacturers.

1.5 Outline of Thesis

This chapter has given an introduction to the thesis. The rest of the thesis is organized as

follows. The next Chapter explains the individual components of the system shown in

Fig.1.1 (iGPS, ROS, robot manipulator UR5 and motion planner MoveIt!). In Chapter

3, the algorithms for iGPS feedback based robot motion control are described in detail.

Also the method of using Kalman Filter for fusion of multi-frequency and delayed data

is explained. Chapter 4 describes the experimental set-up consisting of UR5 and iGPS

system along with the ROS framework. Also the ROS implementation of each of the

algorithm is explained. Then the results of tests conducted in robot simulator and on

physical robot are presented in Chapter 5. Finally Chapter 6 consists of the conclusions

and possible applications of this work. Also some directions for future research are

presented.

9

CHAPTER 2

Description of System Components

This chapter will describe different components of the overall system shown in Fig.1.1.

These include the iGPS technology, UR-5 manipulator, Robot Operating System and

motion planning framework MoveIt!.

2.1 iGPS Technology

The iGPS is a type of distributed metrology system developed by Nikon Metrology. It

offers a high measurement accuracy [upto 0.2mm] [6] with a large workspace. This

system is capable of measuring position and orientation of several points in real time.

Theoretically the number of points it can track simultaneously and independently is

unlimited. Also it can automatically regain connection after a line-of-sight disruption.

Other features of iGPS system include modularity, scalability, reconfigurability, porta-

bility and ease of handling and installation [24]. Currently iGPS system is used for

applications in aircraft assembly and ship building with tasks including alignment, in-

spection, robot calibration, actuator metrolog and tracking [21].

2.1.1 Components of iGPS

There are three main components of iGPS:

1. Transmitters

2. Detectors or Probes

3. Position Calculation Engine or Main Server

Transmitters

The transmitters make up the constellation of ’reference points’ similar to the Geosyn-

chronus satellites in the Global Positioning System (GPS). They send two laser planes

Figure 2.1: iGPS transmitter (fixed)

in a frequency of 40Hz that can be recognized by the detectors. The transmitter just

sends out the signals without higher logic or task. In our workshop, there are 5 fixed

transmitters (one fixed transmitter is shown in Fig.2.1) and one mobile transmitter that

can be used on a tripod. The mobile one is very useful to get access to some hidden

places in the workshop. Three of the transmitters are tilted about 10 degrees to widen

the space for mobile units on the floor. All the transmitters have power switches to

make it much easier to turn them on and off. The transmitters need to run for at least 15

minutes before starting the calibration.

Detectors/Probes

Several detectors/probes are provided with the iGPS system for different applications.

i6 Probe

The i6 Probe (shown in Fig.2.2) is the most important tool for the setup of frames

and coordinate systems. It contains 4 detectors and therefore it can detect all 6 Degrees-

of-freedom (DoF). It is basically a mounting point for different tips that can be used to

clarify the position of points or objects with respect to given coordinate systems. The

common workflow of the i6 Probe is strongly connected to Serveyor (software on main

server) for step-by-step setups of coordinate systems or frames. The i6 Probe has its

own power switch and a toggle button to interact with Surveyor. The battery status is

shown directly at the battery case. It has to be made sure that the correct tip is selected

in the frame setup. Otherwise incorrect coordinates will be measured and the results

will be wrong even if the workflow is correct.

11

(a) Front view (b) Back view

(c) Tip Tools (d) Tips (e) Tip Callibrator

Figure 2.2: i6 Probe

There are 3 different tips for the i6 Probe and Nikon provides two tools for mounting

those tips. One can hold the tip and the other one can be attached to the probe. With

opposite movements they can be mounted properly. All the tips are pre-calibrated by

Nikon and can be selected within the frame configurations of the i6 Probe. If the results

of a tip are getting worse it is possible to re-calibrate this tip. Therefore a special tool in

surveyor is provided to move the tip within the tool calibrator. It is NOT recommended

by the manufacturer to re-calibrate their tips. Normally the calibration can last for the

whole lifetime of a tip. Only if a tip gets damaged by hitting hard surfaces it becomes

necessary to re-calibrate them. The calibration routine for tips is more useful for self-

made tips, if this is desired and necessary.

i6 Long Reach Probe

The i6 Long Reach Probe (LRP) (shown in Fig.2.3) is the elder brother of the i6

Probe. It also contains 4 detectors and can detect all 6 spatial DoF. The distances be-

tween the detectors are much wider than the ones from the i6 Probe and this is the

biggest advantage for calibration. Due to this the effect of measurement errors become

less important and so the calibration results are much better. Therefore the i6 LRP is

always set as the frame for Bundle Collection by default. It is recommended to always

12

(a) Front view (b) Back view

(c) Tips

Figure 2.3: i6 LRP Probe

(a) Front view (b) Back view

(c) i5 Base (d) i5 Mount

Figure 2.4: i5 Probe

take the i6 LRP for the calibration routine. The PCE of the i6 LRP can be turned on

at the black/yellow box by sliding the little button at the bottom. The LRP is also pre-

calibrated by Nikon and any changes in calibration state can affect the absolute accuracy

of iGPS. Beside the calibration options of the LRP it is also possible to measure certain

points within the workspace as with the i6 Probe. On the bottom frame a tip holder can

be mounted to achieve this functionality. There are multiple different tips for the LRP

(shown in Fig.2.3c that are already set up within Surveyor to choose from.

i5 Probe

The i5 is a probe (shown in Fig.2.4) which can be used to measure 5 DoF. It contains

2 detectors that allow the detection of x, y, z positions and the two rotational axes. Only

13

(a) Single Detectors (b) Single Detector in Mount

Figure 2.5: Single Detectors with Mounts

the rotation for the vertical axes cannot be detected by this device. Thus for 6-DoF

measurements with i5’s we need to create a frame of frames with a minimum of two

i5’s. The battery of the i5 is secured by a hooked button. Every i5 has its on power

button. It is placed underneath the bottom detector and looks like a little grey dot.

To be flexible in mounting the i5 at specific measurement places, every i5 has its

own mounting plate. Every plate can be mounted by 4 screws and they contain magnets

to ensure the full contact between the i5 and the plate. The centred position is ensured

by a vertical pin in the mounting plate that needs to be fixed by the grub screw at the

side.

Single Detectors

The single detectors (shown in Fig.2.5) are very useful for custom frames that need

to be small and specific. For measurement tasks where two or three i5s cannot be used,

a set of 4 single detectors can be considered. The single detectors need to be wired

properly with a PCE and certain amplifiers. The system is marked explicitly with only

one solution of wiring up all the connections. Similar to the i5’s the single detectors

also have their own mounting plates. Both plates are similar except that the mounting

plates for the single detectors don’t lock the rotation around the vertical axis. However

this is not important because a single detector cannot detect this DoF.

Main Server (iSpace) and Position Calculation Engine (Surveyor)

Surveyor is the software provided by Nikon for communicating with other iGPS com-

ponents. It is made to setup differant configurations of the system, to show frame po-

sitions, to calibrate the system etc. The user interface of Surveyor software is shown

in Fig.2.6a. iSpace (shown in Fig.2.6b) is the main server which runs the Surveyor

14

(a) Surveyor software user interface (b) iSpace (Main Server)

Figure 2.6: Main Server/PCE

software.

2.1.2 iGPS working principle

There are three main steps in the measurement algorithm of iGPS [11][25]. First step

consists of calibration of the system to define a reference co-ordinate frame. This is

done through an internal calibration procedure known as ‘Bundle adjustment’Ṫhrough

this procedure the relative locations of the transmitters, the rotation speeds and spin

axis biases for each transmitter are stored in the system. The transmitters emit two

laser beams at slightly different speeds between 40-50 hz. The beams are separated in

horizontal plane by 90 degrees and inclined to the vertical plane by 30 degrees. Also

each transmitter emits an IR strobe at the beginning of every second rotation. Each

sensor in the workspace receives these signals and sends the time of arrivals to the

Position Calculation Engines. The resolution of arrival times is 20ns and this determines

the position measurement accuracy. Using these arrival times a ray can be defined from

transmitter to the sensor. The elevation (theta) of the ray is determined by the time

difference between two laser beams striking the sensor. For higher elevation angles,

the time difference is more and for lower elevation angles the time difference is less.

The azimuth angle is determined by the time difference between the reference strobe

signal and the midpoint of the two laser beams. These elevation and azimuth angles are

calculated for each detected transmitter. Then the position of the sensor with respect

to the co-ordinate frame defined in the calibration procedure is obtained by using the

15

method of triangulation.

2.1.3 Accuracy of iGPS

For optimum performance it is recommended to keep the distance between sensors and

transmitters between 3m to 35m and guarantee individual sensors to be within line

of sight of at least 4 transmitters. The measurement error given by the manufacturers

of the initial version of iGPS system based on a fairly comprehensive mathematical

model with the combined standard unvertainty expanded to a 95% confidence level

(2σ) is 0.25mm [26]. Further, the claimed accuracy for overall system performance

stands at 169µm for 15 × 15 × 1.5m working space and 315µm for a 30 × 30 × 3m

working space with a network of six transmitters arranged in a box configuration [27].

These accuracy statements are valid under recommended operating conditions and with

two second averaging of the measurements which may not be possible in all industrial

environments.

The static tests conducted by several researchers have shown the 3D positioining

error to be between 0.05−0.25mm and expanded coordinate uncertainity (2σ) of±1−

1.1mm [24] [25] [28]. The dynamic tests conducted by [21] indicated that for speeds

below 10cm/s, the iGPS is capable of producing relatively repeatable tracking data.

However, as speed is increased, the tracking accuracy degrades. At 1m/s, the mean

tracking error can be in the order of 3− 4mm. [25] have reported that for path tracking

purpose the deviations are less than 0.3mm but with a delay of 0.3ms.

2.2 Universal Robot-5 Manipulator

The Universal Robot-5 (UR5), shown in Fig.2.7, is a lightweight 6 DoF robot developed

by Universal Robot group. UR5 is ideal for automating low-weight processing tasks

like picking, placing and testing. It is easy to program and fast to set-up. It has been

used widely in industry for different tasks ranging from assembly to painting, from

packing to polishing, from injection moulding to welding and even 3D printing. In

this section, the components of the UR5 manipulator, its specifications, workspace and

communication methods will be described.

16

Figure 2.7: UR5 Manipulator

2.2.1 Components of UR5

The UR5 manipulator consists of 6 joints: shoulder pan, shoulder lift, elbow, wrist-1,

wrist-2 and wrist-3. The base link is used to mount the robot on a table or on ground.

A small shoulder link connects the shoulder pan and lift joints. Upper arm link is

the longest link which connects the elbow joint and shoulder joint. The forearm link

connects the elbow joint and wrist joints. Small wrist links connect the three wrist

joints. An external end-effector such as a gripper can be attached to the wrist-3 joint

using a mounting hub. The dimensions of each link are shown in Fig.2.8.

2.2.2 Specifications of UR5

Table 2.1 lists the important technical specifications of UR5 given by the Universal

Robots [2]

2.2.3 Workspace of UR5

The workspace of the UR5 robot extends 850mm from the base joint [2] as shown in

Fig.2.9. It is important to consider the cylindrical volume directly above and directly

below the robot base when a mounting place for the robot is chosen. Moving the tool

17

Figure 2.8: Components of UR5

Weight 18.4 kg
Payload 5 kg
Reach 850 mm

Joint ranges ±360° on all joints
Speed Joint: Max 180°/sec Tool: 1m/sec.

Repeatability ±0.1mm
Footprint φ149mm

Degrees of freedom 6 rotating joints
Control box size (WxHxD) 475 mm x 423 mm x 268 mm

Communication TCP/IP 100 Mbit: IEEE 802.3u, 100BASE-TX
Ethernet socket & Modbus TCP

Power consumption Approx. 200 watts using a typical program
Materials Aluminium, ABS plastic, PP plastic

Operating Temperature 0− 50°C
Power supply 100-240V AC, 50-60 Hz

Table 2.1: Technical specifications of UR5 manipulator

18

(a) Front (b) Tilted

Figure 2.9: UR5 workspace (Figure courtesy [2])

close to the cylindrical volume should be avoided if possible, because it causes the

joints to move fast even though the tool is moving slowly, causing the robot to work

inefficiently and the conduction of the risk assessment to be difficult.

2.2.4 Communication with UR5

The Universal Robot can be controlled a three different levels: The Graphical User-

Interface (GUI) Level, the Script Level and the C-API Level [29]. PolyScope, shown

in Fig.2.10, is the graphical user interface (GUI) to operate the robot, run existing robot

programs or create new ones [30]. PolyScope runs on the touch sensitive screen at-

tached to the control box. It is possible to connect a mouse and a keyboard to the

controller box or the teach pendant. Using PolyScope, individual joints can be moved

directly in the ‘move joints mode’ or the robot can be moved physically by hand in the

‘teach mode’ . It also has a ‘Emergency Stop Button’ to halt the robot motion in case

of apparent collision or undesired motion.

There are several possilble ways of controlling the UR5 on Script Level like the

URScript programming language, Matlab or ROS. In this research, due to the reasons

that will be explained in Section 2.3.1 we have chosen to use ROS for Script Level

control of UR5.

The third level of control i.e. C-API Level controller can be compiled on the robot

itself. However this method is not recommended due to safety concerns.

19

Figure 2.10: Graphical User Interface: PolyScope

2.3 Robot Operating System

Robot Operating System (ROS) is not an ‘Operating System’ in the traditional sense of

process management and scheduling [31], but ROS is an open-source software frame-

work providing operating-system like capabilities for controlling robots. It provides

an advanced programming environment for controlling low-level hardware. In recent

years, the robotics community has made tremendous progress in software development

for robots using ROS.

The official description of ROS is [32]: ROS is an open-source, meta-operating sys-

tem for your robot. It provides the services you would expect from an operating system,

including hardware abstraction, low-level device control, implementation of commonly-

used functionality, message-passing between processes, and package management. It

also provides tools and libraries for obtaining, building, writing, and running code

across multiple computers. ROS is similar in some respects to ’robot frameworks,’ such

as Player, YARP, Orocos, CARMEN, Orca, MOOS, and Microsoft Robotics Studio.

20

2.3.1 Why ROS?

The main advantages of ROS are modularity, scalability, software reuse, distributed

computing, language independence and rapid testing [8]. These are explained below:

• Modularity: Using ROS, the robot’s software can be divided into small stan-
dalone parts that co-operate to accomplish a high level objective.

• Scalability: ROS is appropriate for large runtime systems and for large develop-
ment processes

• Software Reuse: Robotics community has developed efficient implementations
of many important robotic algorithms such as navigation, motion planning, map-
ping etc. in ROS, which can be used directly for developing new ideas. This
results in a rapid learning curve and less time is spent on re-inventing the wheels.

• Distributed Computing: In many robotic tasks, several robots and even humans
(through desktops/laptops) have to collaborate and communicate with each other.
Sometimes a single robot itself can have multiple computers which individually
focus on specific tasks. ROS provides very simple and efficient mechanisms for
communication between multiple processes.

• Language Independence: ROS framework is easy to implement in any modern
programming language such as Python, C++, Lisp, Java and Lua.

• Rapid Testing: In many cases, working with physical robots is time consuming
and sometimes not possible due to lack of resources. Using ROS we can test
high-level algorithms by replacing the low-level control and hardware with sim-
ulators. Also the sensor data from actual robots can be recorded and replayed to
test various algorithms for processing that data.

2.3.2 ROS Architechure

ROS is based on a graph architecture with the fundamental elements: nodes, topics,

messages and services [31] as shown in Fig.2.11.

Nodes are the small software blocks or modules where all the processing takes place.

All nodes run simultaneously and mostly independent of each other. A robotic system

will usually consist of multiple nodes. For example, one node for controlling the motor

drivers, one node for handling the encoders, one node for camera feedback, one node

for path planning etc. A ROS node is written with the use of a ROS client library, such

as roscpp or rospy.

Nodes communicate with other through messages published on Topics. A message

is a data structure which can also be an array of messages nested arbitrarily deep. Nodes

21

Figure 2.11: Fundamental elements of ROS

can publish (send) messages to a topic or subscribe (receive) messages from a topic. A

single node can publish or subscribe to multiple topics. Also a single topic can have

multiple publishing or subscribed nodes. In general the nodes are not aware of other

publishers/subscribers of topics.

In addition to messages, ROS nodes can get information in the form of ‘parameters’

stored on a central ‘parameter server’ . This is useful for storing and fetching config-

uration parameters of the robot system which mostly remain constant throughout the

operation.

Another mode of communication between nodes is called as ‘service’ . In this

routine, a server node advertises a ‘service’ with a unique name. Client nodes can send

a message to the server node as a ‘request’ and await the ‘response’ (again in the form of

a message) from the server node. Thus this is ‘need-based’ interaction between nodes

whereas the topics have ‘broadcast’ routine scheme.

The ROS Master node provides naming and registration services to the rest of the

nodes in the ROS system. It tracks publishers and subscribers to topics as well as

services. The role of the Master is to enable individual ROS nodes to locate one another.

Once these nodes have located each other they communicate with each other peer-to-

peer.

For starting multiple nodes, including the master, at the same time, a ‘launch file’

can be created. The collection of executable and supporting files which perform a cer-

tain high-level processing task is called as a ‘package’. All ROS software is organized

22

Figure 2.12: ROS visualization (rviz) Interface

in packages and ROS provides several commands for installing new packages and in-

teracting with installed packages.

2.3.3 Additional ROS tools

Visualizing Data

For displaying sensor data and state information from ROS, a 3D visualizer called rviz

(ROS visualization), shown in Fig.2.12, is often used. The robot’s current configuration

can be visualized on a virtual model of the robot. Also live representations of sensor val-

ues published over ROS Topics such as camera data, infra-red distance measurements,

sonar data etc. can be displayed in rviz.

Simulation with Gazebo

As mentioned in Section2.3.1, ROS allows us to separate the high level algorithm im-

plementations from the low level controllers and drivers on physical robot. So a real

robot can be replaced by a powerful simulator such as Gazebo (shown in Fig.2.13)

in which the characteristics of the robot and its environment can be modelled. Using

Gazebo we can simulate the interactions between the world and the robot in the same

way as the physical system. This makes it possible to rapidly design robots, test algo-

23

Figure 2.13: Gazebo (Robot Simulator) Interface

rithms, perform regression testing and train AI system using realistic scenarios. Gazebo

offers the ability to accurately and efficiently simulate populations of robots in complex

indoor and outdoor environments. This free high-fidelity simulator has a robust physics

engine, high-quality graphics and convenient programming and graphical interfaces.

ROS-Industrial

ROS capabilities are being extended to robotic applications in manufacturing automa-

tion through the ROS-Industrial (ROS-I) project [33]. This open source project includes

interfaces for common industrial manipulators, grippers, sensors and device networks

with ROS. An international consortium of industry and research members supports the

ROS-I project. Some of the current members include industry parteners such as ABB

Robotics, Boeing, Bosch, BMW, John Deere, Siemens and academic partners such as

Fraunhofer IPA, NTU Singapore, SwRI, UT Austin, TU Delft etc.

ROS Industrial combines the ROS high-level functionality with the low-level relia-

bility and safety of an industrial robot controller. It provides an easy interface to apply

cutting-edge academic research to industrial applications by using a common ROS ar-

chitechure. ROS-I provides Unified Robot Description Formats (URDFs), interface

libraries (drivers) and other capabilities (packages) that are useful for manufacturing

automation. The Unified Robot Description Format (URDF) is the standard ROS XML

representation of the robot model (kinematics, dynamics, sensors).

24

Figure 2.14: MoveIt! system architecture (Figure courtesy [3])

2.4 Motion planning framework: MoveIt!

The role of a motion planner is to find a feasible and collision free trajectory from

current configuration to desired configuration of the robot. ‘MoveIt!’ is one such state-

of-the-art motion planner for manipulation tasks which is widely used in the robotics

community. This open source platform can be integrated with the ROS framework

and used for evaluating new robot designs, developing advanced robotics applications

and building integrated robotics products for industrial, commercial, R&D and other

domains. MoveIt! incorporates the latest advances in motion planning, manipulation,

3D perception, kinematics, control and navigation.

2.4.1 MoveIt! System Architecture

Fig.2.14, shows the high level architecture of the move_group node. This node is the

primary node provided by MoveIt!. It puts all the individual pieces together and pro-

vides a set of ROS services and actions for the users to use. The various components of

the system architecture are explained below [3]:

25

1. User Interface: There are several possible ways for accessing the actions and ser-
vices provided by move_group node. The most common ways include move_group_interface
package in C++, moveit_commander package in Python or using the Motion Plan-
ning plug-in to rviz GUI.

2. Configuration: The URDF and SRDF for the robot can be passed to the move_group
node using the robot_description and robot_description_semantic parameters re-
spectively on the ROS param server. Other configuration parameters including
joint limits, kinematics, motion planning, perception and other information can
be stored in the config directory of the corresponding MoveIt! config package for
the robot

3. Robot interface: The communication between move_group node and the physi-
cal robot or simulator model is done through ROS topics and actions. The current
state of the robot i.e. information about each joint value of the robot, is obtained
by subscribing to the /joint_states topic. Multiple publishers can publish to this
topic even with only partial information about the robot state. The joint state
publisher has to be implemented on each physical robot or the simulator model.
The global information about the robot’s pose and other frame transforms are ob-
tained from the ROS TF library through the /tf topic. The robot needs to have a
robot_state_publisher node for publishing TF information on /tf topic. A ROS
action interface called FollowJointTrajectoryAction is used by move_group node
to communicate with the controllers on the robot. The server for this action ser-
vice has to be running on the robot side and move_group will act as a client to talk
to this controller action server. The representation of the world and any objects
carried by the robot (considered to be rigidly attached to the robot) are maintained
by move_group node using the Planning Scene Monitor.

move_group is structured in a modular way. There are separate plugins for indi-

vidual capabilities like pick and place, kinematics, motion planning. The plugins are

configurable using ROS through a set of ROS yaml parameters and through the use of

the ROS pluginlib library.

2.4.2 Motion Planners

MoveIt! supports many different types of planners such as Open Motion Planning

Library (OMPL), Stochastic Trajectory Optimization for Motion Planning (STOMP),

Search-Based Planning Library (SBPL), Covariant Hamiltonian Optimization for Mo-

tion Planning (CHOMP) etc. The default motion planner integrated in MoveIt! Is

OMPL (Open Motion Planning Library). This open-source motion planning library

primarily implements randomized motion planners. OMPL has no concept of a robot

thus MoveIt! Configures OMPL and provides the back-end for OMPL to work with the

problems in Robotics.

26

2.4.3 Collision Checking

The motion planner has to account for self-collisions and collisions of the robot with the

environment (including any objects mounted on/picked up by the robot). The collision

checking in MoveIt! is mainly carried out using the FCL package and is configured

inside a Planning Scene using the CollisionWorld object. Different types of objects

such as meshes, primitive shapes (boxes, cylinders, cones, spheres and planes), octomap

etc. are supported for collision checking in MoveIt!. The computational complexity of

collision checking operation is reduced by using the Allowed Collision Matrix (ACM)

which encodes a binary value corresponding to the possibility of collision between pairs

of bodies. If the bodies are far away then this value will be set to 1 and collision

check will not be done between these bodies. The motion planner also has to obey

user specified kinematic constraints like position/orientation constraints on links, joint

constraints etc. MoveIt! offers all these constraints along with the option of additional

constraints with a user-defined callback.

2.4.4 Time Parametrization

The motion planners usually do not associate any timing information with the gener-

ated paths. Thus some post-processing has to be done in order to time parametrize the

kinematic trajectories for velocity and acceleration values accounting for the maximum

velocity and acceleration limits imposed on individual joints. MoveIt! supports various

algorithms for post-processing a kinematic trajectory to add timestamps and veloci-

ty/acceleration values. However, at present only Iterative Parabolic Time Parametriza-

tion is available in MoveIt! which is used by default in the Motion Planning Pipeline.

2.4.5 Kinematics

Due to MoveIt!’s modular design, different kinematics plugins can be used with it. The

default inverse kinematics plugin for MoveIt! is configured using the Kinematics and

Dynamics Library (KDL)[34] numerical jacobian-based solver. But other numerical IK

plugins like trac-IK[35] and LMA (Levenberg-Marquardt) can be used. Users can also

develop their own analytical IK plugins for MoveIt! using the IKFast module [36].

27

2.5 Summary

In this Chapter the different components of overall system for iGPS feedback based

motion control of robotic manipulator were described. iGPS (indoor GPS) system can

be used for applications of robotics in industrial automation as it offers high accuracy

and large workspace volume. Other advantages of iGPS include modularity, scalability,

reconfigurability, portability and ease of handling and installation. There are several

detectors/probes provided with the iGPS system which can be used for different appli-

cations. The detectors receive the laser planes sent by the transmitters and a Position

Calculation Engine calculates the position of detector using triangulation. Universal

Robot-5 (UR5) manipulator can be used for evaluating the control structures for iGPS

feedback based motion control. This lightweight 6DoF robot is ideal for automating

low-weight processing tasks. Robot Operating System (ROS) is an open source plat-

form which can be used for Script Level control of UR5 manipulator. ROS architecture

is suitable for modularity, scalability, software reuse, distributed computing, language

independence and rapid testing. Robotics researchers have developed additional capa-

bilities using ROS such as rviz (for visualizing data), Gazebo (for robot simulation),

ROS-Industrial (for interfacing with common industrial robots). MoveIt! is a state-of-

the-art open source motion planner which can be used to obtain collision free trajecto-

ries that obey user defined constraints. The system architecture of MoveIt! is modular

and it supports different plug-ins for motion planning, kinematics, collision checking

and time parametrization.

28

CHAPTER 3

Algorithms for iGPS feedback based robot motion

control

The general structure of the robot motion control system, without direct feedback of

end effector’s position and orientation (pose), is shown in Fig.3.1.

The desired pose of the end effector is given by the user in Cartesian space. The

motion planner performs interpolations and inverse kinematic transformations to gen-

erate a joint space trajectory that will move the robot from current configuration to

the desired configuration. A ‘trajectory’ is different from a ‘path’ as it includes time

parametrization and takes into account the joint velocity/acceleration limits and any

other user specified constraints at the joint level. The motion planner tries to generate a

trajectory which is free from self-collisions and collisions with other objects in the envi-

ronment of the robot. If the motion planner is successful in generating such a trajectory,

then the target joint space values are sent to the joint controllers. The joint controllers

perform the closed loop control of individual motors/actuators with feedback from po-

sition/velocity sensors such as encoders attached to the joints. The drive commands

from joint controllers are sent to the motors/actuators which move the physical robot or

robot’s model in a simulator. The joint states feedback from encoders is provided by a

joint states publisher.

Figure 3.1: Robot motion control system

Figure 3.2: Correction before motion planning stage

Three possible ways of including the iGPS feedback in this robot motion control

system are:

1. Correction before motion planning stage

2. Correction in joint space trajectory

3. Feedback in joint control loop

These three approaches are explained in detail below.

3.1 Correction before motion planning stage

In this approach, the pose of robotic manipulator’s end effector obtained from external

sensor is used to correct the desired end effector pose given to the motion planner. As

shown in Fig.3.2, the motion planner then uses the corrected desired end effector pose

to generate a new joint space trajectory. The joint controllers then perform the closed

loop control with feedback from joint encoders and drive the robot through the desired

configurations.

One possible way of making corrections before motion planning stage is illustrated

in Fig.3.3. Here the user input is given in the form of a sequence of desired end effector

poses. After reaching each target pose, the end effector pose measurement from iGPS

is taken into account.

Let T d1 , T
d
2T

d
n be the sequence of ‘n’ desired end effector poses given by the

user. The actual poses of end effector as measured by iGPS be T a1 , T
a
2T

a
n . Let

30

Figure 3.3: Illustration of motion planning stage correction method

T d∗1 , T d∗2T d∗n be the sequence of corrected end effector poses after applying the cor-

rection before motion planning stage. Each pose Ti ∈ R4×4 is a homogeneous trans-

formation matrix consisting of a position vector Pi ∈ R3×1 and an orientation matrix

Ri ∈ R3×3 as shown in Eq.3.1.

[Ti]4x4 =

 [Ri]3x3 [Pi]3x1

[0]1x3 [1]1x1

 (3.1)

At each goal state ‘i’, the error (∆i) between measured end effector pose and desired

end effector pose is given by Eq3.2

∆i =

0 if i = 1

(T d∗i)
−1
T ai if i > 1

(3.2)

The next target pose is modified to compensate for error in the current pose.

T d∗i+1 = T di+1∆i (3.3)

Another possible way of compensating for error in the current pose is to issue a new

target pose by adding the error in previous target pose, but the first method is preferred

as it doesn’t increase the number of target poses.

The ‘Correction before motion planning stage’ approach does not require any trans-

formation from end-effector co-ordinates to joint space co-ordinates before making the

correction. However, the disadvantage of this approach is that a new motion plan has to

be generated after each correction, which may add delays to the movement of robotic

31

Figure 3.4: Correction in joint space trajectory with Kalman Filter

manipulator. Also it does not correct the end effector pose during the execution of a

motion plan. Thus the trajectory followed by end-effector between two target poses

will be inaccurate.

3.2 Correction in joint space trajectory

In this algorithm, the correction is done after the motion planning stage but before

the joint control stage, as shown in Fig.3.4. The joint space trajectory generated by

motion planner consists of target joint positions/velocities/accelerations along with time

parametrization. At each target joint state, the end effector pose feedback from iGPS is

taken into account. The sensor signal is converted from end effector coordinates to joint

states using inverse kinematics (IK) transform. The publishing rate of iGPS is 40Hz

whereas the joint trajectory goal states are published at 10Hz. The inverse kinematics

solver may have inaccuracies in the solutions. Also if there is a loss of line-of-sight

between the iGPS probe and transmitters, we will not get any feedback and the robot

motion will not be corrected. To overcome these difficulties, the use of a Kalman Filter

for fusion of encoder data and iGPS data is proposed. It will be explained in Section

3.4.

Let Jd1 , Jd2 Jdn be the sequence of ’n’ joint states calculated by the motion planner

32

after converting the desired end-effector trajectory to joint space trajectory. The actual

joint states from IK transformed data of iGPS be Ja1 , J
a
2J

a
n . Let Jd∗1 , J

d∗
2J

d∗
n be

the sequence of end effector poses after applying the correction before motion planning

stage.

At each joint goal state ‘i’ the error (δi) between actual joint states and desired joint

states is given by Eq.3.4.

δi =

0 if i = 1

Jdi − Jai i > 1

(3.4)

The next target joint state vector is modified to compensate for error in the current

joint states.

Jd∗i+1 = Jdi+1 + δi (3.5)

3.3 Feedback in joint control loop

An alternative approach for end effector feedback is shown in Fig.3.5. In this approach,

the iGPS feedback is given to the joint states publisher. The sensor signal is converted

from end-effector coordinates to joint states and given to the joint controllers as inputs

instead of the encoder feedback through the joint states publisher.

The publishing rate of iGPS is 40Hz whereas the joint control loop runs at 125Hz.

At this high sampling rate, the delay due to Inverse Kinematics Solver results in incor-

rect joint states being published by the joint states publisher. Also if there is a loss of

line-of-sight between the iGPS probe and transmitters, the joint controllers will not get

any feedback and the robot motion will stop. To overcome these difficulties, again the

use of a Kalman Filter is proposed for fusion of encoder data and iGPS data.

As shown in Fig.3.6, the encoder data (published at 125Hz) is fused with joint state

values obtained from iGPS feedback (published at 40Hz) using the inverse kinematics

solver. Any additional delay due to inverse kinematics solver is also taken into account.

The fused data is published at 125Hz through the joint state publisher and given as

input to the joint controllers. The algorithm for using Kalman Filter for fusion of multi-

frequency and delayed sensor data will be explained in Section 3.4.

33

Figure 3.5: Feedback in joint control stage

Figure 3.6: Feedback in joint control stage with Kalman Filter

34

In this approach, the motion plan has to be generated only once and there are no

delays in the movement of robotic manipulator. Also, the frequency of the joint control

loop is much higher than the motion planning loop thus this approach provides potential

for higher bandwidth of the closed loop system. But this method is difficult to imple-

ment because it requires the transformation from end-effector coordinates to joint states

at a very high rate. Also in some industrial robotic manipulators, the joint controllers

and joint states publishers are designed by the manufacturer and not accessible for mod-

ifications. In these cases the joint controllers directly use the encoder feedback only and

there is no way of supplying corrected joint values as inputs to the joint controllers.

The advantage of this approach is that the required publishing rate of fused joint

states is much lower than the joint control loop frequency. Also there is no need to

generate a new motion plan at each target point. This approach removes the drawbacks

of previous two approaches and is easily implementable on all robotic manipulators,

including those who have inbuilt joint controllers and joint states publisher.

3.4 Kalman filter for fusion of multi-frequency and de-

layed sensor data

In the control structures described in Section 3.2 and Section 3.3, the iGPS measure-

ments have to be converted from end effector coordinates to joint states. This requires

an inverse kinematics solver which may add delay to the system. Also the desired loop-

rate of joint states publisher is higher than the sampling rate of the sensor. Furthermore,

in actual implementation we need a method to filter the iGPS data and compensate

for any delays or missing data. To overcome these difficulties, we propose the use of

Kalman Filter for obtaining the optimal state estimate by combining the encoder data

with the end-effector sensor (iGPS) data. The iGPS measurements are first converted to

joint states and then fused with the joint state data available from encoders. This allows

us to extend the discrete Kalman filter for fusion of this multi-frequency and delayed

sensor data.

35

3.4.1 Discrete Kalman Filter

Kalman Filter, as the name suggests, was invented by R.E. Kalman in 1960 [37]. It is

a recursive mathematical formulation for obtaining optimal state estimates of a linear

system. Optimality here implies that the mean of the squared error between true value

and estimated value is minimized. Kalman filter is used for many applications including

filtering noisy signals and generating non-observable states. It supports estimation of

past, present and future states even without knowing the precise nature of the modelled

system. Since Kalman Filter involves solving a linear system of equations it has the

ability to calculate the state estimates in real time. Another advantage of the Kalman

Filter is that knowledge of a long state history is not necessary since the filter only

uses the immediate last state and a covariance matrix that defines the probability of the

state being correct. The Discrete Kalman Filter formulation is described below (adapted

from [38]).

The linear stochastic differential equation of a discrete-time controlled process is

given by:

xk = Axk−1 +Buk−1 + wk−1 (3.6)

Here the n × n matrix A relates the state at the previous time step k − 1 to the state at

the current time step k, in the absence of either a driving function or process noise. The

n× l matrix B relates the optimal control input u ∈ Rl to the state x ∈ Rn.

The sensor measurement z ∈ Rm is related to the state of the system by equation:

zk = Hxk + vk (3.7)

Here the m× n matrix H is the model of the sensors and relates the state to the sensor

measurement zk. The matrices A,B and H are assumed to be constant throughout the

process. The random variables wk and vk correspond to the process and sensor noise

respectively. They are assumed to be independent of each other, white and with zero

mean and covariancesQ andR respectively. The process noise covariance matrixQ and

sensor noise covariance matrix R are assumed to be constant throughout the process.

The mathematical formulation of the Kalman Filter consists of two parts: Time

update equations (prediction) Eq.3.8, Eq.3.9 and Measurement update equations (cor-

36

rection) Eq.3.10, Eq.3.11, Eq.3.12.

x̂−k = Ax̂k−1 +Buk−1 (3.8)

P−
k = APk−1A

T +Q (3.9)

Kk = P−
k H

T (HP−
k H

T +R)
−1

(3.10)

x̂k = x̂−k +Kk(zk −Hx̂−k) (3.11)

Pk = (I −KkH)P−
k (3.12)

The variables in these equations are summarized in Table 3.1.

x̂−k Priori state estimate at step k
A Matrix that relates the previous state and current state
B Matrix that relates the previous control input to current state
uk Control input at step k
P−
k Priori estimate error covariance at step k
Q Process noise covariance
Kk Kalman gain
H Matrix that relates the state to measurement
R Measurement noise covariance
x̂k Posteriori state estimate at step k
Pk Posteriori estimate error covariance at step k
I Identity matrix

Table 3.1: Description of variables in Discrete Kalman Filter equations

The time update equations are used to calculate the state and error covariance esti-

mates for the next time step based on the current state and error covariance estimates.

These values are called ’priori estimates’. The measurement update equations are used

to incorporate a new sensor measurement to ’correct’ the priori estimates and obtain

improved ’posteriori’ estimates of states and error covariance. Thus the time update

equations are predictor equations and the measurement update equations are corrector

equations. The final estimation algorithm consists of these predictor-corrector parts as

shown in Fig.3.7.

37

Figure 3.7: Discrete Kalman Filter algorithm

Figure 3.8: Multi-frequency data fusion using Kalman Filter

3.4.2 Multifrequency data fusion using Kalman Filter

The Discrete Kalman Filter can be extended to incorporate multiple sensor measure-

ments with different sampling rates [39][40][41]. Let the state of the system be mea-

sured by n sensors S1, S2,..Sk, Sk+1..Sn with sampling frequencies f1, f2 ... fk, fk+1,...

fn. The desired output frequency of the Kalman Filter estimates be fo. Without loss of

generality, the sensor frequencies can be arranged in a decreasing order.

f1 ≥ f2 ≥fk ≥ fo ≥ fk+1 ≥ ... ≥ fn (3.13)

The sensors are divided into two groups: Group-1 consists of sensors S1..Sk with fre-

quencies greater than the desired output frequency and Group-2 consists of Sk+1...Sn

with frequencies lower than the desired output frequency. For sensors in Group-1, the

measurements are down-sampled to fo and the update equations (correction) are applied

at each time-step. For sensors in Group-2, the measurement update is applied whenever

the next sensor reading becomes available. The algorithm is summarized in Fig.3.8.

38

Figure 3.9: Classical method for fusion of delay and non-delay data (Figure courtesy
[4])

3.4.3 Fusion of multi-frequency and delayed sensor data using Kalman

Filter

In some cases, the sensor measurements may have delays due to processing time. Vari-

ous methods have been developed to use Kalman Filter for sensor data with delays. The

common approach [42] is to go back to the time step for which measurement data is

available at the current time step and then re-filter again from that time to the current

time using all the available sensor data. This approach is shown in Fig.3.9.

For multifrequency and delayed data fusion, the above approach can be combined

with the approach described in section 3.4.2. Let the state of the system be measured

by n sensors S1, S2, Sn with sampling frequencies f1, f2...... fn and measurement

delays δ1
fo

, δ2
fo

... δn
fo

where fo is the desired output frequency of the filter. Again the sen-

sors can be divided into two groups Group-1 and Group-2 as described in section 3.4.2.

Without loss of generality we arrange the sensors with increasing order of correspond-

ing delays:

0 ≤ δ1 ≤ δ2 ≤ ≤ δn (3.14)

For a sensor Sk if the measurement frequency fk is greater than fo then at each step t,

update t− δk step with current sensor reading and apply Kalman Filter prediction/cor-

39

rection from t − δk to t with all available inputs at each step. If fk < fo, then at step t

when sensor data is available, update t− δk step with current sensor reading and apply

Kalman Filter prediction/correction from t − δk to t with all available inputs at each

step. Thus we only need to store at max δn number of readings of each sensor.

3.5 Summary

The robot motion control system consists of a motion planner, joint controller and joint

states publisher. To include the direct end-effector pose feedback from iGPS in the mo-

tion control system, three possible approaches were discussed in this chapter. The first

approach involves correction before the motion planning stage. This may add delays

to the robot motion since a new motion plan has to be generated after every correction.

Also it does not ensure accurate trajectory of end effector between two desired poses.

In the second approach, iGPS feedback is transformed from end-effector co-ordinates

to joint states using an inverse kinematics solver. Then the correction is applied in the

joint space trajectory after the motion planning stage but before the joint control stage.

In the third approach, the feedback is given to the joint controllers directly, after inverse

kinematics transform. This approach can be used for following the trajectory accurately

but it is difficult to implement. To improve the robustness of above approaches, the use

of Kalman Filter for fusion of encoder and iGPS data was proposed. The formulation of

Discrete Kalman Filter was described and extended to fusion of multifrequency delayed

sensor data.

40

CHAPTER 4

Experimental Setup for iGPS feedback based control of

UR5 manipulator using ROS

As described in Chapter2, the UR5 is a 6 DoF robot arm developed by Universal Robots

group. Universal Robots group has been working on an experimental package which

is released through the ROS-Industrial project. In this project, the basic functionalities

included in the universal_robot stack [43] are used and more functionalities are added

to integrate the UR5 in a collaborative environment with the iGPS feedback. The entire

framework is shown in Fig.4.1. The algorithms described in Chapter3, are implemented

in the ROS framework for experimental validation. Even though the UR5 is chosen as

a test-bed, the implementation can be easily extended to any other industrial robot due

to the modular nature of our code. This chapter will first describe the UR5 manipulator

control procedure using ROS without iGPS feedback. Then the implementation of each

of the three algorithms for iGPS feedback based control of UR5 using ROS will be

explained.

4.1 Motion control of UR5 manipulator using ROS

The universal_robot package is a part of the ROS-Industrial program [43]. It provides

ROS nodes for communication with Universal’s industrial robot controllers (ur_driver)

Figure 4.1: iGPS feedback based control of UR5 manipulator using ROS

Joint Position Limits (rad) Velocity Limits (rad/sec)
Shoulder Pan −π to π 3.15
Shoulder Lift −π to π 3.15

Elbow −π to π 3.15
Wrist-1 −π to π 3.2
Wrist-2 −π to π 3.2
Wrist-3 −π to π 3.2

Table 4.1: UR5 joint limits

and URDF models for various robot arms and associated MoveIt! packages. The re-

searchers at ‘Center of Advanced Robotics (COAR)’ group at Institut fÃijr Getriebetech-

nik und Maschinendynamik, RWTH Aachen (where this project work was carried out)

have developed an interface (move_group_interface) between the move_group node and

ur_driver node to extend MoveIt!’s capabilities to UR5. It should be noted that MoveIt!

is only able to solve the motion planning request for joint limited case of the robot. The

joint limits are listed in Table4.1.

One of the most important things in path planning is to avoid collisions with objects

which could appear in the workspace of the robot. MoveIt! can perform the collision

checks given that the environment model is provided to it. COAR researchers have

developed the following architecture to simplify and integrate the object detection and

avoidance process in the path planning process.

The main problem has been divided into two parts, fixed objects and random objects.

In the first case, a node is created to declare different kinds of fixed objects in the

workspace. Another node similar to the previous one is created for random objects. This

node maps the new objects added to the workspace or attached to the manipulator with

high frequency, so that these objects are integrated into the object avoidance procedure.

Another added capability of move_group_interface at COAR includes the grip-

per_action service. This is especially useful for pick/place tasks using a simple gripper

with 2 fingers. The fingers of the gripper can be commanded to move to any desired

position within the joint range.

There are three possible modes of user inputs that can be given to control the UR5

manipulator using move_group_interface:

1. PoseMoveInterface: The desired end effector position and orientations (poses)
can be specified by the user in a .txt file. The move_group_interface will read one
pose at a time and provide it to MoveIt! for motion planning. If the motion plan

42

request is successful, then ur_driver will be command the actual robot or Gazebo
model to the desired pose. After completing this action, the next target pose
will be attempted and this process will continue till the last user defined pose is
reached. In this case, the path followed by end-effector between two poses cannot
be specified and it may not be linear.

2. JointMoveInterface: In this mode, the user directly specifies the target angular
positions for each joint. The move_group_interface will read one set of values at
a time and provide it to MoveIt! for motion planning. If the motion plan request
is successful, then ur_driver will command the motors of actual robot or Gazebo
model to the desired angular values. After completing this action, the next set of
target angular positions will be attempted and this process will continue till the
last set of user specified joint values.

3. WaypointsMoveInterface: The user can specify a Cartesian path that the end-
effector of UR5 should follow. This is done by specifying a list of way-points
along the desired path. The initial pose (start state) does not need to be added to
the way-point list but adding it can help with visualizations. The move_group_interface
will read all the way-points at once and supply the list to MoveIt! for motion plan-
ning. MoveIt! will attempt to find a Cartesian path through those way-points. If
the motion plan request is successful, then ur_driver will command the actual
robot or Gazebo model to follow the desired trajectory. In this case, the path
followed by end-effector is linear between two way-points.

4.2 UR5 motion control with iGPS feedback using ROS

For direct measurement of end-effector’s pose using iGPS, two i5 probes are mounted

on the gripper attached to the wrist-3 joint of UR5. Each i5 probe is able to provide

5DoF data about the end-effector’s pose and therefore a frame-of-frames is constructed

using two i5 probes in the Surveyor system for getting 6DoF measurements. The ex-

perimental set-up is shown in Fig.4.2.

A ROS node was developed to publish the co-ordinate frames of iGPS probes and

transmitters to the /tf topic. The reference frame for these values is set up by using

the i6 probe. The move_group_interface node listens to this topic for getting the end-

effector’s pose. This direct feedback of end-effector’s pose is used for accurate motion

control of UR5 manipulator by using the three algorithms described in Chapter3.

43

Figure 4.2: Experimental setup with UR5 manipulator and two i5 probes

4.2.1 Correction before motion planning stage

As explained in Section3.1, the first approach for iGPS based accurate motion control

of UR5 manipulator involves correction before the motion planning stage. The pose

values given by i5 frame-of-frames are converted from iGPS world frame to the UR5

world frame using the transformation matrix [τ]ur5iGPS ∈ R4×4. Let the pose reported

by i5 probes in iGPS world frame be T iGPS ∈ R4×4 consisting of a position vector

P iGPS ∈ R3×1 and an orientation matrix RiGPS ∈ R3×3 as shown below:

T iGPS =

 [RiGPS]3x3 [P iGPS]3x1

[0]1x3 [1]1x1

 (4.1)

Then the pose in UR5 world frame T ur5 is given by:

T ur5 = [τ]ur5iGPST
iGPS (4.2)

The UR5 is commanded using the PoseMoveInterface to move through a sequence

of poses. At each destination pose, the error between actual pose values given by iGPS

and the desired pose, is calculated by using Eq.3.2 and substituting T ai = T ur5. The

next target pose is compensated for this error by using Eq.3.3.

44

4.2.2 Correction in joint trajectory

In this approach, the iGPS correction is done after the motion planning stage but before

the joint control stage. The iGPS values are converted from end-effector coordinates

to joint states using inverse kinematics solvers. Two inverse kinematics solvers were

tested in this approach:

1. ur_kinematics: This is an analytical IK solver developed by Hawkins [44] specifi-
cally for the UR manipulators using the closed form inverse kinematics solutions.
However, this solver requires the end effector pose in base link frame of UR5
which is difficult to obtain using the iGPS probes. Also this solver gives all pos-
sible solutions without considering the joint limits listed in Table4.1.

2. trac_ik: Trac-IK [35] is an inverse kinematics solver developed by Traclabs that
gives more reliable solutions than common available open source IK solvers. This
faster, significantly more reliable replacement for KDL’s pseudoinverse Jacobian
solver works for any robot chain defined in a URDF file. Also it is able to give
IK solutions within the joint limits specified in URDF. It has different modes of
solutions:

• speed : Returns first IK solution

• distance : Returns closest IK solution to seed values

• manip1 : Returns solution that maximizes
√
det(J ∗ JT)

• manip2 : Returns solution that minimizes cond(J) = |J | ∗ |J−1|

We use the distance mode and give the encoder values as the seed values. The

IK solver runs for the full cycle and gives the closest solution to these seed values.

This data is fused with the encoder data using a Kalman Filter. The output frequency

of the Kalman Filter depends on the time interval between subsequent joint trajectory

states generated by MoveIt!. Usually the interval is between 0.1s to 0.2s. So the output

frequency of 10-20 Hz is sufficient for this approach to work.

This algorithm can be used for both PoseMoveInterface and WaypointsMoveInter-

face. In both cases, the motion plan consists of target joint positions/velcities/accelera-

tions along with time- from-start. At each joint trajectory point, the error between actual

values from Kalman Filter output and target values given by MoveIt!, is calculated us-

ing Eq.3.4. The next target joint trajectory set-point is compensated for this error using

Eq.3.5. The corrected joint trajectory values are published on the FollowJointTrajec-

tory action server. The joint trajectory controller performs interpolations between those

joint trajectory points using linear (if only joint positions are specified) or cubic (if joint

45

positions and velocities are specified) or quintic (if joint positions, velocities and accel-

erations are specified) splines and executes the trajectory as well as the robot hardware

allows.

4.2.3 Feedback in joint control loop

In this approach, the iGPS feedback has to be given directly to the joint controllers.

For this the iGPS values are transformed from end effector frame to joint co-ordinate

frames using one of the inverse kinematics solvers listed in Section 4.2.2. The joint

control loops run at 125Hz and the encoder data is also published at the same frequency

but the iGPS values are published at 40Hz. So we use a Kalman Filter for fusion of

multifrequency data with delays as explained in Section3.4.2. move_group_interface

node then publishes the fused values to a topic /corrected_joint_states. move_group

node of MoveIt! is configured to use these values instead of the values published on

/joint_states topic by the encoders. However, the inbuilt robot joint controllers cannot

be modified to use these corrected values instead of the encoder values. Thus this

approach cannot be tested on the actual UR5 robot.

4.3 Summary

The interface between Universal Robot’s industrial robot controllers and motion plan-

ner MoveIt! was developed to control UR5 manipulator using ROS. Additional ca-

pabilities include gripper action and environment model for collision avoidance. The

robot can be commanded in end-effector co-ordinates mode, joint co-ordinates mode

or cartesian trajectory mode. Experimental set-up was built using two iGPS probes for

getting 6DoF measurements of UR5 manipulator’s end-effector. Further, the three al-

gorithms for iGPS feedback based accurate control of UR5 were implemented in ROS

framework. For transformation between end-effector co-ordinates to joint states, two

different inverse kinematics solvers were included in the code. The analytical IK solver

ur_kinematics is faster and accurate but does not consider joint limits and requires end-

effector pose in base link frame. Also it is only available for Universal’s robots. The

other IK solver trac_ik is more versatile as it can be used for any URDF and it obeys

the specified joint limits.

46

CHAPTER 5

Results

In this chapter, the results of experiments conducted for evaluating the ROS code for

‘iGPS feedback based robot motion control’ on UR5 model in Gazebo and physical

UR5 robot are presented. First, comparison between the accuracy of iGPS measurement

and a camera system will be shown. Then the results of Kalman Filter for fusion of

multi-frequency and delayed data will be described. Finally the comparison between

end-effector trajectory with and without iGPS correction will be presented.

5.1 Comparison of iGPS and Camera

As explained in Section1.4, vision based approaches have been extensively researched

and there are several open source implementations of state-of-the art object tracking al-

gorithms. ViSP (Visual Servoing Platform) is one such library that allows prototyping

and developing applications using visual tracking and visual servoing techniques de-

veloped by Inria Lagadic team [45]. We used the visp_auto_tracker ROS package that

wraps model-based trackers provided by ViSP visual servoing library [46] to get the

3D position and orientation of a stationary object. A QRcode of Flash code pattern as

shown in Fig.5.1a, was attached to the object. ‘Microsoft Kinect for xbox 360’ sensor

(shown in Fig.5.1b) was used for vision feedback. ROS packages libfreenect [47] and

freenect_launch [48] were used to access the Kinect sensor data.

(a) QR-code for automatic object tracking (b) Microsoft Kinect Xbox 360 sensor

Figure 5.1: Object tracking using camera

Figure 5.2: Static position measurement error: Comparision between iGPS and Kinect

Parameter iGPS Kinect
Frequency 40-50Hz 10-30Hz

Range 3-35m 0.8-6m
RMS error 0.2mm 7.9mm

Table 5.1: Comparison between iGPS and Kinect

The visp_auto_tracker is able to automatically detect the object using the QR code

shown in Fig5.1a. The detection allows to initialise the model-based trackers. In case

the tracking is lost, a new detection is performed that will be used to re-initialize the

tracker. However, through our experiments it was found that this re-initialization takes

place only when the object is placed at a certain distance from the camera. So whenever

the tracking was lost, the object had to be taken closer to the camera for re-initialization

of tracking algorithms.

The static position measurement errors of Kinect and iGPS are shown in Fig.5.2.

The results are tabulated in Table5.1. Along with the re-initialization issue, Kinect

based tracking method performs poorly in comparison to iGPS in terms of static posi-

tion measurement accuracy, range and measurement frequency.

48

Parameter Value Parameter Value
A I B Z
H I Q 1e-2*I

Table 5.2: Input parameters for Kalman filter tests (I=Identity matrix; Z = Zero matrix)

Parameter Value Parameter Value Parameter Value
Rsensor1 1e-2*I δsensor1 0 fsensor1 foutput

Table 5.3: Sensor properties for discrete Kalman filter test (I=Identity matrix)

5.2 Kalman Filter Tests

The formulation for fusion of multifrequency and delayed sensor data using Kalman

Filter, as described in Section3.4, was tested on manually generated random sensor data

in Matlab. Then the formulation was implemented in ROS and the Kalman Filter was

tuned for UR5 encoders and IK solutions obtained from iGPS data. This section will

present the results of these tests. Table5.2 lists the values of input paramters used for

Kalman Filter tests.

5.2.1 Discrete Kalman Filter

Kalman Filter code was tested on readings from a single sensor. Fig.5.3 shows the plot

of sensor data, true value and Kalman filter output. Table5.3 lists the sensor parameters.

5.2.2 Fusion of multifrequency sensor data using Kalman Filter

Code for multi-frequency data fusion using Kalman Filter, was tested to fuse the data

from three sensors measuring the same true value with different sampling frequencies.

Fig.5.4 shows the plot of input sensor data, true value and fused KF output. Table5.4

Parameter Value Parameter Value Parameter Value
Rsensor1 1e-2*I δsensor1 0 fsensor1 foutput
Rsensor2 1e-2*I δsensor2 0 fsensor2 0.5 ∗ foutput
Rsensor3 1e-2*I δsensor3 0 fsensor3 0.25 ∗ foutput

Table 5.4: Sensor properties for multi-frequency data fusion using Kalman filter test
(I=Identity matrix)

49

Parameter Value Parameter Value Parameter Value
Rsensor1 1e-2*I δsensor1 0 fsensor1 foutput
Rsensor2 1e-2*I δsensor2 5/fo fsensor2 0.5 ∗ foutput
Rsensor3 1e-2*I δsensor3 10/fo fsensor3 0.25 ∗ foutput

Table 5.5: Sensor properties for multi-frequency and delayed data fusion using Kalman
filter test (I=Identity matrix)

Figure 5.3: Discrete Kalman Filter

50

Figure 5.4: Multifrequency sensor data fusion using Kalman Filter

lists the sensor properties.

5.2.3 Fusion of multi-frequency and delayed sensor data using Kalman

Filter

Code for fusion of multi-frequency and delayed sensor data using Kalman Filter, was

tested to fuse the data from three sensors measuring the same true-value with different

sampling frequencies. In addition, two of the sensors gave the output with different

delays. Fig.5.5 shows the plot of input sensor data, true value and fused KF output.

Table5.5 lists the sensor properties.

5.2.4 Kalman Filter tuning for UR5 and iGPS

The measurement noise covariances Rencoder of the UR5 encoders were measured in

a static configuration. Similarly, the covariances of IK solutions of iGPS measure-

ments Rigps were measured in a static configuration of UR5. The value of process noise

covariance Q was then tuned to get best possible filter performance by keeping the

measurement noise covariances constant. It was observed that for a constant R, reduc-

51

Figure 5.5: Multifrequency and delayed sensor data fusion using Kalman Filter

Parameter Value Parameter Value Parameter Value
Rencoder 1e-9 δencoder 0 fencoder 125Hz
Rigps 1e-6 δigps 0 figps 40Hz

Table 5.6: Properties of UR5 encoder data and iGPS data (IK solutions)

ing Q reduces the output covariance but increased the filter response time. Increasing

the value of R for a constant Q reduced the output covariance but increased the filter

response time. Table 5.6 lists the parameters of UR5 encoders and iGPS (IK solutions).

Fig.5.6 and Fig.5.7 show the Kalman Filtered output of joint angle and velocity

measurements reported by encoder on UR5. Fig.5.8 shows the Kalman filtered output

of joint angles obtained from IK solver using the iGPS measurements of end-effector’s

pose. Fig.5.9 shows the fused output of iGPS and encoder data. (In all these cases the

value of Q is 1e-06)

52

Figure 5.6: Kalman Filter output of encoder joint angle measurements

Figure 5.7: Kalman Filter output of encoder joint velocity measurements

53

Figure 5.8: Kalman Filter output of IK joint angle solution of iGPS measurements

Figure 5.9: Kalman Filter output of iGPS and encoder data fusion

54

Maximum error (mm) RMS error (mm)
Without correction 1.33 0.89

With correction 0.39 0.18

Table 5.7: Error in Trajectory (Gazebo UR5 model) : Correction before motion plan-
ning stage algorithm

Maximum error (mm) RMS error (mm)
Without correction 7.75 4.13

With correction 3.31 2.11

Table 5.8: Error in Trajectory (Physical UR5) : Correction before motion planning stage
algorithm

5.3 Evaluation of iGPS feedback correction before mo-

tion planning stage algorithm

This algorithm was explained in Section 3.1. For testing this algorithm, UR5 manipu-

lator was programmed to pass through a sequence of poses along a straight line (using

PoseMoveInterface explained in Section 4.1). First the code was tested on UR5 model

in Gazebo simulator and then the tests were conducted on the actual UR5 set-up.

UR5 Gazebo model

For simulation in Gazebo, the end-effector’s pose was obtained using the get_link_state

service routine. Fig.5.10 shows the plots of end-effector trajectory with and without di-

rect end-effector pose measurement correction before motion planning stage. Table 5.7

summarizes the maximum and root-mean-squared (RMS) error in end-effector trajec-

tory.

Physical UR5 Robot

Fig.5.11 shows the plots of UR5 end-effector trajectory with and without iGPS end-

effector pose measurement correction before motion planning stage. Table 5.8 sum-

marizes the maximum and root-mean-squared (RMS) error in end-effector trajectory.

55

(a) End effector position along x-axis

(b) End effector position along z-axis

56

(c) Error in end effector position along y-axis

(d) Total error in end effector position

Figure 5.10: Gazebo simulation (Correction before motion planning stage) : 1-D end
effector trajectory

57

(a) End effector position along x-axis

(b) End effector position along z-axis

58

(c) Error in end effector position along y-axis

(d) Total error in end effector position

Figure 5.11: UR5 test (iGPS Correction before motion planning stage) : 1-D end effec-
tor trajectory

59

Maximum error (mm) RMS error (mm)
Without correction 0.33 0.19

With correction 0.25 0.15

Table 5.9: Error in Trajectory (Gazebo UR5 model) : Correction in joint state trajectory
algorithm

Maximum error (mm) RMS error (mm)
Without correction 8.69 4.9

With correction 2.97 1.16

Table 5.10: Error in Trajectory (Physical UR5) : Correction in joint state trajectory
algorithm

5.4 Evaluation of iGPS feedback correction in joint space

trajectory algorithm

This algorithm was explained in Section 3.2 and the ROS implementation was explained

in Section 4.2.2. For testing this algorithm, UR5 manipulator was programmed to tra-

verse along a straight line trajectory (using WaypointsMoveInterface mode explained

in Section 4.1). First the code was tested on UR5 model in Gazebo simulator and then

the tests were conducted on the actual UR5 set-up.

UR5 Gazebo model

For simulation in Gazebo, the end-effector’s pose was obtained using the get_link_state

service routine. Fig.5.12 shows the plots of end-effector trajectory with and without di-

rect end-effector pose measurement correction in joint trajectory (after IK transform and

fusion with encoder data). Table 5.9 summarizes the maximum and root-mean-squared

(RMS) error in end-effector trajectory.

Physical UR5 Robot

Fig.5.13 shows the plots of UR5 end-effector trajectory with and without iGPS end-

effector pose measurement correction in joint trajectory. Table 5.10 summarizes the

maximum and root-mean-squared (RMS) error in end-effector trajectory.

60

(a) End effector position along x-axis

(b) End effector position along z-axis

61

(c) Error in end effector position along y-axis

(d) Total error in end effector position

Figure 5.12: Gazebo simulation (joint state trajectory correction) : 1-D end effector
trajectory

62

(a) End effector position along x-axis

(b) Error in end effector position along x-axis

Figure 5.13: UR5 test (iGPS Correction in joint state trajectory) : 1-D end effector
trajectory

63

5.5 Summary

The accuracy, measurement frequency and range of iGPS was shown to be much better

than a vision sensor like Kinect. The implementation of Kalman Filter was tested for all

the three scenarios: single sensor, multiple sensors with different sampling rates, multi-

ple sensors with different sampling rates and delays. Then the results of filter parameter

tuning for UR5 encoder measurements and IK solutions of iGPS feedback were pre-

sented. Evaluation of two algorithms for iGPS feedback based accurate motion control

of UR5 robot was carried out. The experiments were conducted on the robot model

in Gazebo simulator and also on the physical set-up. The third algorithm (feedback in

joint control loop) could not be tested due to the inbuilt joint controllers of UR5 which

could not be modified to use the corrected joint state feedback. The experiments on

UR5 showed that first algorithm reduced the RMS error in end-effector trajectory to

40% and the second algorithm reduced the same to 25%.

64

CHAPTER 6

Conclusions and Future Work

This chapter will summarize the results and conclusions of this research work. Also a

few directions for possible future extensions will be described.

6.1 Overall system

This work was the first attempt at experimental validation of iGPS feedback based ac-

curate motion control of robot manipulator in a ROS framework. For accurate robot

manipulator control, the method of using direct feedback of end-effector’s position and

orientation using external sensor has been proposed decades ago. But so far most of

the research has focussed on computer vision based approaches. In this work, a large

scale metrology system called ‘iGPS’ was used for direct measurement of end effector’s

position and orientation. iGPS was shown to be better than ‘Kinect (vision sensor)’ in

terms of accuracy, measurement frequency and range. The previous research on iGPS

feedback based motion control has involved only simple controller implementation us-

ing the robot motion control packages provided by OEMs. Also the performance was

limited due to latency and lower accuracy of initial versions of the iGPS system. In this

work, the advanced version of iGPS system was used and the software development

was carried out in the open source framework of Robot Operating System. The advan-

tages of our software development approach include modularity, customizability, ease

of extension to multi-robot systems and collaborative development.

6.2 Algorithms

To include the direct end-effector pose feedback from iGPS in the motion control sys-

tem of a robot manipulator, three possible approaches were described. The first ap-

proach involved iGPS feedback correction before the motion planning stage. In this

approach, a new motion plan had to be generated after every correction. Also it did

not ensure accurate trajectory of end effector between two desired poses. In the sec-

ond approach, iGPS feedback was transformed from end-effector co-ordinates to joint

states using an inverse kinematics solver. Then the correction was applied in the joint

space trajectory after the motion planning stage but before the joint control stage. In

the third approach, the iGPS feedback was given to the joint controllers directly (af-

ter inverse kinematics transform). To improve the robustness of above approaches, the

use of Kalman Filter for fusion of encoder and iGPS data was proposed. The formula-

tion of Discrete Kalman Filter was described and extended to fusion of multi-frequency

delayed sensor data.

6.3 Implementation

Robot Operating System framework was chosen for implementing the algorithms due

to it’s features like modularity, scalability, software reuse, distributed computing, lan-

guage independence and rapid testing. A lightweight 6DoF robot manipulator Uni-

versal Robot-5 (UR5) was used for evaluating the control structures. The C++ API

of a state-of-the-art open source motion planner MoveIt! was used to obtain collision

free trajectories that obey user defined constraints. The ROS interface between Univer-

sal Robot’s industrial robot controllers and motion planner MoveIt! was developed to

control UR5 manipulator. Additional capabilities like gripper action and environment

model for collision avoidance were included in the interface. Three modes of operation

were developed. In the first mode, the sequence of desired end-effector poses could be

specified. In the second mode, the sequence of desired joint states could be specified.

In the third mode, a Cartesian trajectory could be specified in the form of way-points.

A ROS node was developed for getting the iGPS frames from Position Calculation

Engine (PCE). The three structures for iGPS feedback based control were implemented

in the ROS framework. For transformation between end-effector co-ordinates and joint

states, two different inverse kinematics solvers were included in the code. The analyti-

cal IK solver ur_kinematics was found to be faster and accurate but it did not consider

joint limits specified in the URDF and required end-effector pose in the base link frame.

Also it could only be used for Universal’s robots. Thus another IK solver trac_ik was

66

included in the code which was found to be more versatile. It could be used for any

robot and it obeyed the specified joint limits in URDF. Even though the overall im-

plementation was done for UR5 robot, it can be easily extended to any other robot or

multi-robot systems.

6.4 Experimental validation

Experimental set-up was built using two iGPS probes for getting 6DoF pose measure-

ments of UR5 manipulator’s end-effector. The ROS code was first tested on UR5 model

in the robot simulator Gazebo and then tested on the actual robot. The first approach,

‘Correction before motion planning’ added delays to the robot motion since a new mo-

tion plan had to be generated after each correction. This approach reduced the posi-

tioning error (RMS) to 40%. The second approach involved the iGPS feedback (after

inverse kinematics transformation and fusion with encoder data using KF) in the joint

space trajectory calculated by the motion planner. This approach reduced the RMS er-

ror in trajectory to 25%. The third algorithm i.e. feedback at joint control loop could not

be tested since UR5 had it’s own joint controllers which could not be modified. Tables

6.1 and 6.2 summarize the results of experiments.

Control structure Maximum error (mm) RMS error (mm)
No end-effector pose feedback (Fig.3.1) 1.33 0.89

Correction before motion planning (Fig.3.2) 0.39 0.18
Correction in joint space trajectory (Fig.3.4) 0.25 0.15

Table 6.1: Results of simulation in Gazebo

Control structure Maximum error (mm) RMS error (mm)
No iGPS feedback (Fig.3.1) 8.69 4.90

Correction before motion planning (Fig.3.2) 3.31 2.11
Correction in joint space trajectory (Fig.3.4) 2.97 1.16

Table 6.2: Results of experiments with UR5

67

6.5 Possible applications

There are several applications where the improved accuracy of robotic manipulator will

be beneficial. One such application is 3D printing with multi-DoF robotic arms. The

quality of final product of this rapid prototyping technique can be improved by reduc-

ing the error between desired and actual end-effector trajectories. The iGPS feedback

based accurate robot manipulator control techniques can be used for this purpose. An-

other application of this work can be in the robotic manipulation of small deformable

objects like thin cables and wires. Tasks like routing electrical cables can be accom-

plished accurately with the help of iGPS feedback. Since the software development is

done in a ROS framework, the work can be easily extended to multi-robot systems for

collaborative tasks.

6.6 Future improvements

The algorithm for iGPS feedback in the joint control loop as explained in Section 3.3

can be tested on custom built robot manipulator. In our present code, only the posi-

tion control of the end effector is implemented. In future, the velocity and force con-

trol of end-effector can be incorporated. Also advanced control strategies like model

predictive control can be implemented in the joint control loop using the ros_control

package. There is a lot of scope of improvement in the motion planner MoveIt!. Cur-

rently only Iterative Parabolic Time Parametrization is used for obtaining trajectories.

Other time parametrization algorithms like Time Optimal Trajectory Generation can be

implemented in the MoveIt! C++ API.

68

APPENDIX A

Instructions to use the code

A.1 Pre-requisites

• Ubuntu 14.04 LTS

• ROS-Indigo (http://wiki.ros.org/indigo/Installation)

• Gazebo http://gazebosim.org/download

• ROS-Industrial’s universal_robots package http://wiki.ros.org/universal_
robot

• moveit package https://github.com/ros-planning/moveit/tree/
indigo-devel

• geometric_shapes package https://github.com/ros-planning/geometric_
shapes

moveit_commander and geometric_shapes packages must be downloaded in the

catkin_ws/src folder along with the our packages. For further information about config-

uration of ROS environment and catkin workspace set-up procedures please go to the

following link: http://wiki.ros.org/ROS/Tutorials/

Installation procedure for geometric_shapes:

$ cd ~ / c a t k i n _ w s / s r c

$ g i t c l o n e h t t p s : / / g i t h u b . com / ros−p l a n n i n g / g e o m e t r i c _ s h a p e s

$ cd g e o m e t r i c _ s h a p e s

$ g i t c h e c k o u t i n d i g o−d e v e l

Installation procedure for moveit_commander:

$ cd ~ / c a t k i n _ w s / s r c

$ g i t c l o n e h t t p s : / / g i t h u b . com / ros−p l a n n i n g / moveit_commander

$ g i t c h e c k o u t i n d i g o−d e v e l

http://gazebosim.org/download
http://wiki.ros.org/universal_robot
http://wiki.ros.org/universal_robot
https://github.com/ros-planning/moveit/tree/indigo-devel
https://github.com/ros-planning/moveit/tree/indigo-devel
https://github.com/ros-planning/geometric_shapes
https://github.com/ros-planning/geometric_shapes
http://wiki.ros.org/ROS/Tutorials/

Figure A.1: Directory tree

The tree directory is shown in Fig.A.1.

After cloning all the packages in src folder, verify that the /ur5/source_files/main.sh

file has the correct extension for the setup file (.bash or .zsh). Also, verify that the IP

address given in this file matches the one of the Computer on which this code will be

run.

A.2 Git branches in ur5 folder

We have used git for version control of our software. A very long but also very good

introduction into every level of git can be found here https://www.atlassian.

com/git/tutorials/what-is-version-control. The Git branches of UR5

code are listed below with a brief description of each branch.

1. master : Stable branch for controlling UR5 without iGPS feedback

2. igps_path_stage_correction : Development branch for controlling UR5 with iGPS
correction before motion planning stage

3. igps_joint_trajectory_correction : Development branch for controlling UR5 with
iGPS correction in joint space trajectory

4. igps_joint_control_loop : Development branch for iGPS feedback in joint control
loop

A.3 Running simulation in Gazebo

Once the package has been cloned into the src folder in the catkin workspace, execute

these commands in the Linux terminal (Terminator is recommended for this procedure):

70

https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.atlassian.com/git/tutorials/what-is-version-control

$ cd ~ / c a t k i n _ w s

$ source ~ / c a t k i n _ w s / s r c / u r5 / s o u r c e _ f i l e s / main . sh

$ cd b u i l d

$ cmake . . / s r c

$ make

$ cd . .

$ ca tk in_make

These commands will build the catkin workspace which is needed for running the

IGM-UR5 package. Next, execute the following commands:

$ source ~ / c a t k i n _ w s / s r c / u r5 / 0 1 _ROS_Code / s o u r c e _ f i l e s / main . sh

$ r o s l a u n c h i g m _ c o l l i s i o n main . l a u n c h

Open a new terminal or split that one you are currently working on (in Terminator:

Shift+Ctrl+O) and type the following commands:

$ source ~ / c a t k i n _ w s / s r c / u r5 / s o u r c e _ f i l e s / main . sh

$ r o s r u n i g m _ c o l l i s i o n m o v e _ g r o u p _ i n t e r f a c e _ c o l l i s i o n

By default the IGM-UR5 package comes with the internal configuration for a sim-

ulated model of the UR5 (Gazebo model). Therefore, in order to send a trajectory to

the moveit node, the sim_path_trajectory file has to be executed in a new terminal or

window:

$ source ~ / c a t k i n _ w s / s r c / u r5 / s o u r c e _ f i l e s / main . sh

$ r o s r u n i g m _ c o l l i s i o n s i m _ p a t h _ p u b l i s h e r

A.4 Running the IGM-UR5 package on a real UR5 robot

If the package is going to be used on a real robot, the following arguments must be

added when launching the main.launch file:

$ source ~ / c a t k i n _ w s / s r c / u r5 / s o u r c e _ f i l e s / main . sh

$ r o s l a u n c h i g m _ c o l l i s i o n main . l a u n c h sim := f a l s e r o b o t _ i p

: = 1 3 4 . 1 3 0 . 2 0 1 . 2 1 3 r e v e r s e _ p o r t :=50001

71

Once the desired poses have been added to the poses2.txt file, the move_group_interface_collision

and the path_publisher nodes have to be launched into the ROS network. Therefore, in

new terminal windows execute the following commands:

Terminal 1

$ source ~ / c a t k i n _ w s / s r c / u r5 / s o u r c e _ f i l e s / main . sh

$ r o s r u n i g m _ c o l l i s i o n m o v e _ g r o u p _ i n t e r f a c e _ c o l l i s i o n

Terminal 2

$ source ~ / c a t k i n _ w s / s r c / u r5 / s o u r c e _ f i l e s / main . sh

$ r o s r u n i g m _ c o l l i s i o n p a t h _ p u b l i s h e r

A.5 User input

There are three possible modes of user input that can be specified in the code as ex-

plained in Section 4.1. For switching between different modes, the relevant portion in

the main function of move_group_interface_collision.cpp has to be commented out, be-

fore compiling the code. We are working on incorporating a parameter to automatically

select the mode while starting the node itself.

The sim_path_publisher node (simulation) or path_publisher(actual UR5) node will

publish the desired poses included in the file poses2.txt on the /wished_path topic. If

this file name has to be altered, the public variable Pose.sourceFile must be changed in

the C++ code sim_path_publisher.cpp or path_publisher.cpp in the directory:

/ur5/01_ROS_Code/igm_collision/src/

By default the poses included in the poses2.txt represents a specific end-effector

pose in term of 3D position and quaternions for rotation.

x y z rx ry rz w

72

REFERENCES

[1] M. Good and L. Sweet. Structures for Sensor-Based Robot Motion Control. In
American Control Conference, 1984, pages 23–31, San Diego, USA, June 1984.

[2] Universal Robots. User Manual UR5/CB3, 2014.

[3] I. Sucan and S. Chitta. Moveit! http://moveit.ros.org, April 2017.

[4] S. Pornsarayouth and M. Wongsaisuwan. Sensor fusion of delay and non-delay
signal using Kalman Filter with moving covariance. In IEEE International Con-
ference on Robotics and Biomimetics, pages 2045–2049. IEEE, February 2008.

[5] S. Jeon, M. Tomizuka, and T. Katou. Kinematic Kalman Filter (KKF) for Robot
End-Effector Sensing. Journal of Dynamic Systems, Measurement, and Control,
131(2):1–8, 2009.

[6] R. Schmitt, S. Nisch, A. Schonberg, F. Demeester, and S. Renders. Performance
evaluation of iGPS for industrial applications. In International Conference on
Indoor Positioning and Indoor Navigation, pages 1–8. IEEE, September 2010.

[7] Nikon Metrology. iSpace Large volume metrology , tracking and positioning.
www.nikonmetrology.com/iSpace_EN, 2010.

[8] J. O’Kane. A Gentle Introduction to ROS. Independently published, October 2013.

[9] M. de Gier. Control of a Robotic Arm: Application to on-surface 3D-printing.
Master of science thesis, Delft University of Technology, 2015.

[10] T. Tang, C. Liu, W. Chen, and M. Tomizuka. Robotic manipulation of deformable
objects by tangent space mapping and non-rigid registration. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 2689–2696,
2016.

[11] A. Norman, A. Schönberg, Igor A. Gorlach, and R. Schmitt. Validation of iGPS as
an external measurement system for cooperative robot positioning. International
Journal of Advanced Manufacturing Technology, 64(1-4):427–446, 2013.

[12] D. Maisano, J. Jamshidi, F. Franceschini, P. Maropoulos, L. Mastrogiacomo,
A. Mileham, and G. Owen. A comparison of two distributed large-volume mea-
surement systems: the mobile spatial co-ordinate measuring system and the indoor
global positioning system. Proceedings of the Institution of Mechanical Engi-
neers, Part B: Journal of Engineering Manufacture, 223(5):511–521, May 2009.

[13] G. Agin. Real time control of a robot with a mobile camera. Technical note. SRI
International, 1979.

[14] D. Kragic and H. Christensen. Survey on visual servoing for manipulation. Tech-
nical report, Computational Vision and Active Perception Laboratory, 2002.

73

[15] N. Papanikolopoulos and C. Smith. Computer vision eye-in-hand issues during
botic tasks. In International Conference on Robotics and Automation, volume 3,
pages 2989–2994 VOl 3. IEEE, 1995.

[16] R. Basri, E. Rivlin, and I. Shimshoni. Visual homing: Surfing on the epipoles.
International Journal of Computer Vision, 33(2):117–137, 1999.

[17] N. Hollinghurst and R. Cipolla. Uncalibrated stereo hand-eye coordination. Image
and Vision Computing, 12(3):187–192, 1994.

[18] J. Chen, A. Behal, D. Dawson, and Y. Fang. 2.5D visual servoing with a fixed
camera. In Proceedings of American Control Conference, volume 4, pages 3442–
3447. IEEE, 2003.

[19] Y. Zhang and M. Mehrandezh. Visual Servoing of a 5-DOF Mobile Manipulator
using a Catadioptric Vision System. In Canadian Conference on Electrical and
Computer Engineering, page 671906. International Society for Optics and Pho-
tonics, October 2007.

[20] R. Mautz. Overview of current indoor positioning systems. Geodezija ir Kar-
tografija, 35(1):18–22, 2009.

[21] Z. Wang, L. Mastrogiacomo, F. Franceschini, and P. Maropoulos. Experimen-
tal comparison of dynamic tracking performance of iGPS and laser tracker. In-
ternational Journal of Advanced Manufacturing Technology, 56(1-4):205–213,
September 2011.

[22] A. Norman, A. Schönberg, I. Gorlach, and R. Schmitt. Cooperation of Indus-
trial Robots with Indoor-GPS. Proceedings of the International Conference on
Competitive Manufacturing, pages 215–224, 2010.

[23] R. Schmitt, A. Schoenberg, and B. Damm. Indoor-GPS based robots as a key
technology for versatile production. In 41st International Symposium on Robotics
(ISR) and 6th German Conference on Robotics (ROBOTIK), pages 1–7, 2010.

[24] F. Franceschini, M. Galetto, D. Maisano, L. Mastrogiacomo, and B. Pralio. Dis-
tributed Large-Scale Dimensional Metrology. Springer London, London, 2011.

[25] C. Depenthal and J. Schwendemann. IGPS - A NEW SYSTEM FOR STATIC
AND KINEMATIC MEASUREMENTS. Optical 3-D Measurement Techniques
IX, I:131–140, 2009.

[26] ArcSecond. Constellation 3D-i: error budget and spec- ifications.White Paper
063102. Arc Second, Inc., Dulles, VA, 2002.

[27] Metris. iGPS: data sheet v1.3 (DS-iGPS-140807). Metris HQ, Leuven, 2007.

[28] J. Muelaner, Z. Wang, J. Jamshidi, and P. Maropoulos. Verification of the indoor
GPS system by comparison with points calibrated using a network of laser tracker
measurements. Proceedings of the 6th CIRP-Sponsored International Conference
on Digital Enterprise Technology, 66(Flack 2001):607–619, 2010.

[29] Universal Robots. The URScript Programming Language, 2015.

[30] Univeral Robots. PolyScope Manual, 2012.

74

[31] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Ng. ROS: an open-source Robot Operating System. In ICRA Workshop on
Open Source Software, 2009.

[32] Open Source Robotics Foundation. ROS. http://wiki.ros.org/ROS/Introduction,
April 2017.

[33] ROS-Industrial Consortium. ROS-Industrial. http://rosindustrial.org/, April 2017.

[34] Orocos.org. Kinematics and dynamics library (kdl). http://www.orocos.org/kdl,
April 2017.

[35] P. Beeson and B. Ames. TRAC-IK: An open-source library for improved solv-
ing of generic inverse kinematics. In Proceedings of the IEEE RAS Humanoids
Conference, Seoul, Korea, November 2015.

[36] OpenRave. Ikfast: The robot kinematics compiler.
http://openrave.org/docs/0.8.2/openravepy/ikfast/, April 2017.

[37] R. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal
of Basic Engineering, 82(1):35, 1960.

[38] G. Welch and G. Bishop. An introduction to the kalman filter, 2006.

[39] R. Cristi and M. Tummala. Multirate, multiresolution, recursive Kalman filter.
Signal Processing, 80(9):1945–1958, 2000.

[40] L. Dong-Jun and M. Tomizuka. Multirate optimal state estimation with sensor
fusion. Proceedings of the 2003 American Control Conference, 2003., 4:2887–
2892, 2003.

[41] H. Durrant-whyte. Multi Sensor Data Fusion.
http://www.acfr.usyd.edu.au/pdfs/training/multiSensorDataFusion/dataFusionNotes.pdf,
2006.

[42] X. Lu, H. Zhang, W. Wang, and K. Teo. Kalman filtering for multiple time-delay
systems. Automatica, 41(8):1455–1461, 2005.

[43] S. Edwards, S. Glaser, K. Hawkins, W. Meeussen, and F. Messmer. univer-
sal_robot stack. http://wiki.ros.org/universal_robot, April 2017.

[44] K. Hawkins. Analytic Inverse Kinematics for the Universal Robots.
http://hdl.handle.net/1853/50782, 2013.

[45] É. Marchand, F. Spindler, and F. Chaumette. ViSP for visual servoing: A generic
software platform with a wide class of robot control skills. IEEE Robotics and
Automation Magazine, 12(4):40–52, December 2005.

[46] F. Novotny. visp_auto_tracker. http://wiki.ros.org/visp_auto_tracker, April 2017.

[47] H. Martin, J. Blake, K. Machulis, and OpenKinect community. libfreenect.
http://wiki.ros.org/libfreenect, April 2017.

[48] P. Mihelich and P. Khandelwal. freenect_launch.
http://wiki.ros.org/freenect_launch, April 2017.

75

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	Introduction
	Overview and Problem Statement
	Motivation
	Project Goals
	Literature review
	Outline of Thesis

	Description of System Components
	iGPS Technology
	Components of iGPS
	iGPS working principle
	Accuracy of iGPS

	Universal Robot-5 Manipulator
	Components of UR5
	Specifications of UR5
	Workspace of UR5
	Communication with UR5

	Robot Operating System
	Why ROS?
	ROS Architechure
	Additional ROS tools

	Motion planning framework: MoveIt!
	MoveIt! System Architecture
	Motion Planners
	Collision Checking
	Time Parametrization
	Kinematics

	Summary

	Algorithms for iGPS feedback based robot motion control
	Correction before motion planning stage
	Correction in joint space trajectory
	Feedback in joint control loop
	Kalman filter for fusion of multi-frequency and delayed sensor data
	Discrete Kalman Filter
	Multifrequency data fusion using Kalman Filter
	Fusion of multi-frequency and delayed sensor data using Kalman Filter

	Summary

	Experimental Setup for iGPS feedback based control of UR5 manipulator using ROS
	Motion control of UR5 manipulator using ROS
	UR5 motion control with iGPS feedback using ROS
	Correction before motion planning stage
	Correction in joint trajectory
	Feedback in joint control loop

	Summary

	Results
	Comparison of iGPS and Camera
	Kalman Filter Tests
	Discrete Kalman Filter
	Fusion of multifrequency sensor data using Kalman Filter
	Fusion of multi-frequency and delayed sensor data using Kalman Filter
	Kalman Filter tuning for UR5 and iGPS

	Evaluation of iGPS feedback correction before motion planning stage algorithm
	Evaluation of iGPS feedback correction in joint space trajectory algorithm
	Summary

	Conclusions and Future Work
	Overall system
	Algorithms
	Implementation
	Experimental validation
	Possible applications
	Future improvements

	Instructions to use the code
	Pre-requisites
	Git branches in ur5 folder
	Running simulation in Gazebo
	Running the IGM-UR5 package on a real UR5 robot
	User input

	REFERENCES

