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We investigate the collaborative task of object handovers between a human and
a robot. Object handover is one of the most common skills required for a collab-
orative or an assistive robot. Tasks such as surgical assistance, housekeeping,
rehabilitation assistance, and collaborative assembly require a robot to give ob-
jects to a human (robot-to-human handover) and take objects from a human
(human-to-robot handover).

First, we design robot controllers for previously unexplored human-robot
handover scenarios involving a) robot behavior specification by end-users, b)
flexibility to change handover strategies, c) unknown robot dynamics, and d)
human-like bi-manual handovers. For “a”, we propose two receding horizon
controllers that utilize timing parameters and provide failure feedback to the
user. We find that these two controllers offer contrasting user experience and
task performance, vis-a-vis a baseline controller, in an industrial human-robot
collaborative task. For “b”, we present a controller that uses automated syn-
thesis from specifications in Signal Temporal Logic, and illustrate the flexibility
of our approach by reproducing, in a simulation environment, existing human-
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robot handover strategies found in the literature. For “c”, we evaluate the po-
tential of a reinforcement learning method, Guided Policy Search (GPS), both in
a simulation environment and on a physical robot arm. Our evaluations provide

new insights into the capabilities and limitations of GPS. For “d”, we evaluate



the potential of an imitation learning technique, Bayesian Interaction Primitives
(BIPs), and discuss two adaptations of BIPs for generating humanlike bimanual
reaching motions.

Second, we investigate robot gazes in human-to-robot handovers. We de-
sign human-inspired robot gaze behaviors by analyzing the receiver’s gaze pat-
terns in human-to-human handovers. We conduct four user studies with two
robot platforms to evaluate human preferences for the robot receiver’s gaze
behavior in handovers. Our studies reveal that the most preferred robot re-
ceiver’s gaze behavior in a human-to-robot handover consists of a combination
of face-oriented gaze for social engagement and task-oriented gaze directed at
the giver’s hand.

Third, we develop two datasets of human-to-human handovers: biman-
ual handovers, and multiple sequential handovers in a shelving task. These
datasets could help build human motion models and robot controllers for those

scenarios of human-robot handovers.
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CHAPTER 1
INTRODUCTION

In this work, we develop robot controllers, robot gaze behaviors, and human
motion datasets for the collaborative task of object handovers. This work is
motivated by the increasing shift toward a human-robot joint workforce [35,
68], and the projections of more and more robots being used in the future for

assistive and domestic purposes [73, 54].

Object handovers are a central aspect of human-robot collaboration in both
industrial and domestic environments. Examples include a collaborative fac-
tory robot exchanging parts with a human co-worker, a surgical assistant robot
transferring instruments to or from a surgeon, a warehouse robot helping a hu-
man shelve items, a domestic robot unloading a dishwasher, and a caregiver
robot providing food or medicine to bedridden people. These tasks include

both human-to-robot and robot-to-human handovers.

A handover typically consists of three phases: a reach phase in which both
actors extend their arms towards the handover location, a transfer phase in
which the object is transferred from the giver’s hand to the receiver’s hand, and
a retreat phase in which the actors exit the interaction. These phases involve
coordination in both time and space of hand movements, grip forces, body pos-

tures, and non-verbal cues like gazes.

The importance and complexity of handovers have resulted in a growing
body of scientific research on this topic. However, we identify some gaps in the

existing work and address these gaps in this dissertation.



Figure 1.1: This work focuses on developing robot motion controllers and robot
gaze behaviors for human-robot handovers, and investigating human motion
in handovers.

1.1 Research Questions

In this work, we seek to address three research questions related to object han-

dovers as depicted in Figure

* How to control a robot to perform handovers with humans? We focus
on four previously unexplored scenarios: controller design by end-users,
unified framework for different handover strategies, unknown robot dy-

namics, and human-like bimanual handovers.

¢ Which gaze behavior should a robot utilize while receiving an object from

a human?

* How do humans perform bimanual and multiple sequential handovers

with each other?

Tables and [1.3|show comparisons of the features of some of the ex-
isting works and the research directions considered in this work. A detailed

literature review is presented in Chapter



Table 1.1: Comparison of features of human-robot handover controllers

Online User Automated . Humanlike
. Bimanual . Learn

Target  Specified  Controller Handovers Reaching Dvnamics

Update Parameters Synthesis Motion y
[112] v - - - -
[102] - - - - -
[132] v - - v -
[180] v - - v -
@ - : : : :
[100] v - - v -
[63] - - - - -
[110] v - - - -
[149] v - v - -
[169] v - - v -
1.2.1 v v - - -
1.2.2 v - - - -
1.2.3 v - - - v
1.2.4 v - v v -

Table 1.2: Comparison of studies of robot gaze in human-robot handovers

Robot-to-Human Human-to-Robot Different Different

Handovers Handovers Objects  Postures
[115] v - - -
[188] v - - -
[83] v - - -
- v v v

Table 1.3: Comparison of datasets of human-to-human handovers

Bimanual Mocap RGB-D  Multiple  Sequential
Handovers Data Data  Viewpoints Handovers
[25] - v - - -
[28] - v - - -
[183] - - v v -
v v v v v




1.2 Research Direction 1: Controllers for Human-Robot Han-

dovers

The first research direction of this work focuses on the design of robot con-

trollers for previously unexplored human-robot handover scenarios.

1.2.1 Controller Design by End-Users (Chapter 3)

Prior studies of human-robot handovers did not consider scenarios where par-
ticipants need to design the robot’s handover controller for a collaborative task
with timing constraints. Such a flexibility is important in industrial settings with
dynamically changing task requirements, and it can increase the acceptance of
robots as coworkers. A majority of existing handover controllers require tun-
ing non-intuitive controller parameters to specify the robot’s behavior, for ex-
ample, proportional gain [112], Dynamic Movement Primitive (DMP) parame-
ters [132]. Some researchers have proposed handover controllers with intuitive
parameters, for example delay/reach timings [125], but these controllers were

not evaluated in scenarios where users can specify these parameters.

We propose two receding horizon controllers (RHC) for human-robot ob-
ject handovers and evaluate them in two human-participant studies in which
users design a collaborative robot’s behavior for an industrial task with timing
constraints, simulated in a lab setting. Our proposed controllers allow users to
specify timing parameters for the reach-to-handover motion of the robot, and
provide feedback if the robot cannot satisfy those constraints. These features

make such a controller useful for settings where end-users need to tune the be-



havior of the robot without programming knowledge. However, our studies
show that the two proposed controllers have contrasting effects on the user ex-
perience and task performance, even though they both have intuitive timing pa-
rameters and provide failure feedback. Our findings could shed light towards

the design of better user-defined controllers for human-robot handovers.

1.2.2 Unified Framework for Different Handover Strategies

(Chapter 4)

A multitude of handover strategies have been proposed in the literature for
human-robot handovers [163, 115, 163, 189, 18, 110, [161]]. But there is no unified
framework to easily switch between these strategies. Also, the existing con-
trollers are programmed manually, which is an error-prone process. To over-
come these shortcomings, we develop a controller for human-robot handovers
that is automatically synthesized from high-level specifications in Signal Tem-
poral Logic (STL). We develop specification templates for human-to-robot and
robot-to-human handovers, and illustrate the flexibility of our approach by re-
producing, in simulation, existing human-robot handover strategies found in

the literature.

1.2.3 Unknown Robot Dynamics (Chapter 5)

Recently, a reinforcement learning algorithm called “Guided Policy Search”
(GPS) [92] has been successfully demonstrated for autonomous manipula-

tion [32] 91, 96, 02]], and locomotion tasks [185| 91} 93, [94] without prior knowl-



edge of the robot or the environment dynamics. However, these existing eval-
uations differ from human-robot handovers because handovers involve large
spatial variations in reach locations, moving targets, and changes in the robot’s
mass induced by different objects being handed over. We evaluate GPS, both in
a simulation environment and on a physical robot, for generating robot reaching
motions in a handover. The key findings are that GPS has good generalizability
over changes in the robot end-effector’s mass but poor spatial generalizability.
Our attempts to replicate these findings in the real environment, provide new
insights into the challenges associated with the use of GPS on a physical collab-

orative robot with safety constraints.

1.2.4 Humanlike Bimanual Handovers (Chapter 7)

There are numerous applications where bimanual handovers are useful or even
necessary. Bimanual handovers are necessary when handing over large rigid
objects such as crates, deformable objects such as folded clothes, spherical ob-
jects such as a basketball, and delicate objects like crockery. Also in some cul-
tures, it is a rule of etiquette to hand over objects with two hands. However,
there is very little work on robot controllers for bimanual human-robot han-
dovers [12} [159| 149| 59]. Further, these existing approaches do not generate
a human-like robot motion, which is desired for humanoid robots. For single-
handed or uni-manual handovers, several researchers have proposed robot con-
trollers for generating human-like reaching motions [132, 100, 84, 180, 182]. But,
to the best of our knowledge, there is no prior work on human-like robot mo-
tion in bimanual handovers. We seek to address this gap by developing robot

controllers for human-like bimanual handovers. We evaluate Bayesian Interac-



tion Primitives (BIPs) [22], an imitation learning technique, for training a robot
to perform bimanual reach-to-handover motions from human-human handover
demonstrations. We find that the existing formulation of BIPs does not lend it-
self readily to bimanual reach-to-handover motions. We discuss two possible

solutions to adapt BIPs for this task.

1.3 Research Direction 2: Robot Gaze Behaviors in Human-to-

Robot Handovers (Chapter 6)

The second research direction of this work investigates human preferences for
robot gaze behaviors when the robot is receiving an object from a human. Past
research has shown that the robot’s head gaze behaviors affect the subjective
experience and timing of robot-to-human object handovers [115)] 188) 48, 183].
However, all of these works only studied robot-to-human handovers, where the
robot was the giver. Human-to-robot handovers, where the robot is the receiver,
are equally important with many applications in various domains. Therefore,

we investigate robot gaze behaviors in human-to-robot handovers.

To find candidates for robot gaze behaviors, we analyze gaze behaviors of
human receivers in human-to-human handovers by annotating gaze locations
in over 14000 frames of a public dataset of handovers [25] with the giver’s and
the receiver’s gaze locations. We find that the most common gaze behavior
employed by a receiver consists of continuously looking at the other person’s
hand during the reach and the transfer phases, and then looking at the other

person’s face during the retreat phase.



We then implement and compare four human-inspired robot head gaze be-
haviors during the reach phase of human-to-robot handovers. Our studies find
that observers of a handover perceive a Face-Hand transition gaze, in which the
robot initially looks at the giver’s face and then at the giver’s hand, as more
anthropomorphic, likable, and communicative of timing compared to continu-
ously looking at the giver’s face (Face gaze) or hand (Hand gaze). Participants
in a handover perceive Face gaze or Face-Hand transition gaze as more anthropo-
morphic and likable compared to Hand gaze. However, these results are limited
to a specific object and the standing posture of the giver, a common limitation

of other prior studies as well.

To expand and generalize our findings, we study human preferences to-
wards robot gaze behaviors in human-to-robot handovers, instead of only the
reach phase, for four different object types (large, small, fragile, non-fragile)
and two human postures (standing, sitting). We find that, for both observers
and participants in a handover, when the robot exhibits a Face-Hand-Face gaze
(gazing at the giver’s face and then at the giver’s hand during the reach phase
and back at the giver’s face during the retreat phase), participants consider the
handover to be more likable, anthropomorphic, and communicative of timing.
We do not find evidence of any effect of the object’s size or fragility or the giver’s

posture on the gaze preference.



1.4 Research Direction 3: Human-Human Bimanual and Se-

quential Handovers (Chapter 7)

The third research direction of this work focuses on investigating human-to-
human bimanual and sequential handovers. Humans accomplish the challeng-
ing task of object handovers seamlessly. In the past, researchers have studied
various aspects of human-to-human handovers to understand how people per-
form this complex maneuver. Some studies investigated different phases of han-
dovers, such as approach [7], reach [66} 128, 107], and transfer [30, 42]. Others
have built datasets of human-to-human handovers [25, 28, [183]. However, all
of these works have studied handovers of objects with single-handed grasps i.e.

uni-manual handovers.

To the best of our knowledge, there is no public dataset of human-to-human
handovers of objects requiring bimanual grasps, even though such handovers
are equally important and even more challenging. Further, several collaborative
tasks require multiple sequential handovers. For example, shelving in a ware-
house, automotive assembly, and unloading dishes or groceries. In these tasks
some objects need to be handed over with two hands, owing to their shape, size,
or fragility, while others can be handed over with one hand. Sometimes the
giver and/or the receiver need/s to perform a self-handover, i.e. transferring
the object from one hand to another, to adjust the grasp. When people perform
tasks requiring multiple handovers, they effortlessly utilize these different types

of handovers.

To help design robot controllers and human motion models for biman-

ual and multiple sequential handovers, we build two multi-sensor datasets of



human-to-human handovers. The first dataset consists of 360 handover record-
ings generated from 12 pairs of participants performing both unimanual and
bimanual handovers with 5 objects, and only bimanual handovers with 5 addi-
tional objects. The second dataset consists of 1440 handover recordings gener-
ated from the same 12 pairs of participants performing shelving and unshelv-
ing tasks involving object handovers with 30 objects. Both datasets include the
giver’s and receiver’s upper-body skeleton tracking data, two RGB-D datas-
treams, annotations of the handover phase, and anthropometric measurements

of the participants.
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CHAPTER 2
LITERATURE REVIEW

This chapter provides a summary of the existing body of work related to ob-
ject handovers between two agents, including handovers between two humans
and between a human and a robot. This is not an exhaustive survey, and we
refer the reader to a recent review article on object handovers [122]. We begin
with a brief survey on the roles that collaborative robots are currently playing in
the workforce, and are envisioned to play in the future. Object handover being
one of the most important collaborative tasks, this background serves as a mo-
tivation to study handovers and to develop robot controllers for human-robot
handovers. We then present the insights from existing studies of human-human
and human-robot handovers. These findings have helped researchers develop
models of the human behavior in a handover, and also propose controllers for
generating appropriate robot behavior in a handover. Finally, we present a sur-

vey of existing controllers for human-robot handovers.

2.1 Human-Robot Workforce

Robots are playing an increasing part in the economy. Industries are rapidly
introducing small table-top robotic arms, also known as collaborative robots
or cobots [35], to work alongside human workers on factory floors. The Inter-
national Federation of Robotics reported that annual global robot installations
increased by 6% in 2018 to 422,271 units, worth USD 16.5 billion (without soft-
ware and peripherals) [68]. This report projects that in 2022 the annual sales

volume will increase to 583,520 units with an increase of 12% on average per
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year from 2020-22.

The main industrial applications of collaborative robots involve automotive
assembly [15] [6] [113], material handling [56] and welding [33]. Though the
automotive industry is the largest customer of collaborative robots, closely fol-
lowed by the electrical/electronics industry, small and medium-sized compa-
nies are also increasingly moving towards a joint human-robot workforce [35].
There is a growing trend of automation and data exchange, labeled “Indus-
try 4.0” [87]. This may lead to novel production systems characterized by in-
dividualized products under the conditions of a highly flexible mass produc-
tion [168]. In such production systems, collaborative robots and intelligent
decision-making software platforms can complement the flexibility and soft
skills of human co-workers. Apart from civil applications, human-robot teams
also find applications in urban search and rescue [70], firefighting [117] and
surveillance [146]. The global military robots market is anticipated to grow at
a compound annual growth rate (CAGR) of 9.0% over the forecast period 2017-
2024 [121].

Object handover is one of the most common skills required for a collabora-
tive or assistive robot. Tasks such as surgical assistance, housekeeping, rehabil-
itation assistance, and collaborative assembly require a robot to give objects to a
human (robot-to-human handover) and take objects from a human (human-to-

robot handover).
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2.2 Human-Human Handovers

Humans perform object handovers seamlessly, thus human-human handovers
are the benchmarks for human-robot handovers. Researchers have studied var-
ious aspects of human-human handovers to understand how people perform

this complex maneuver.

2.2.1 Overall Structure of the Handover Process

Strabala et al. [163] proposed that the underlying structure of the handover pro-
cess consists of two channels: physical and social-cognitive. The physical chan-
nel consists of three phases, the “approach” phase in which both actors move
to close proximity, the “reach” phase in which both actors extend their arms to-
wards the handover location, and the “transfer” phase, in which the object is
transferred from the giver to the receiver followed by exiting the joint activity.
The social-cognitive channel consists of the context i.e. establishing which object
will be handed over, before beginning the “approach” phase, and the common

ground in terms of when and where the object will be handed over.

The approach, reach, and transfer phases of handovers are smooth and dy-
namic actions, and blend into each other, instead of being separate and sequen-
tial actions, as shown by Basili et al. [7]. However, following a reductionist
approach, researchers have studied individual phases of handovers to get a sys-

tematic understanding of the parameters and actions of each phase.
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2.2.2 Approach Phase

Studies of the approach phase have examined where the approach phase ends
and how the object is carried in the approach phase. Basili et al. [7] found that
the mean interpersonal distance between the participants at the end of the ap-
proach phase is 1.16 m, but it varies considerably for different participants. In
the studies conducted by Lee et al. [90], participants playing the role of a care-
taker used both hands while carrying the object in the approach phase, and then

transitioned to single-handed reach and transfer movements.

2.2.3 Reach Phase

Studies of the reach phase have provided a better understanding of the veloc-
ity profiles of the giver’s and/or the receiver’s hand when they reach towards
the handover location. Shibata et al. [156] showed that the giver’s hand moves
along a nearly linear path with a bell-shaped velocity profile and the peak ve-
locity is reached slightly before the half duration. They also found that the re-
ceiver’s motion either followed a minimum jerk trajectory through a via point
or followed a path computed online during the handover. Huber et al. [66, 64]
also found that the hand movements had bell-shaped velocity profiles, higher
velocities for larger movement amplitudes, and lower velocities for more accu-
racy. Parastegari et al. [128] also showed that the giver’s hand moves with a
bell-shaped velocity profile, with the peak velocity independent of the actor’s

pose and/or the object type in the absence of a physical constraint.

Mason et al. [107] found that during the reach phase the giver’s kinematic as

well as force-dependent variables were largely insensitive to the receiver’s mo-
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tion, whereas the receiver’s motion differed when they grasped the object from
a stationary vs a moving giver. Medina et al.’s [110] studies of human-human
handovers revealed that the giver leads the motion during the reach phase and
the receiver’s motion is coupled to it. Roy et al. [148] investigated short-cycle
repetitive handover tasks in three environments, real-world supermarkets, sim-
ulation, and laboratory. They found that the giver experiences higher loads on
the lower back than the receiver, and the givers are perceived as faster than the

receivers.

2.2.4 Transfer Phase

The transfer phase of handovers is characterized by haptic interaction between
the giver and the receiver via the object. Chan et al. [30] found that the giver
takes on the responsibility of ensuring object safety whereas the receiver con-
trols the rate of load transfer, and in turn, the efficiency of the handover. They
also found that the grip force to load force ratios of the giving task are similar
to a picking up task, and the ratios of receiving task are similar to a placing
task. Endo et al. [42] observed that the grip force of the giver during the reach
phase is relatively independent of the variations in handover locations and re-
ceiver’s motions. In their study, depending on whether the transfer was done
at self-selected, fixed, or random locations, the giver’s grasp release timing had
different variability, with random location having the highest variability. Based
on their findings, they suggested that the initial contact is performed in a feed-
forward manner whereas subsequent grip force modulation is carried out with
haptic feedback. Medina et al. [110] found that the grip force applied by hu-

mans is linearly proportional to the load share of the object. Neranon [119,120]
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found that the mean peak forces were between 0.85-3.65 N for objects of weights

0.42 kg, 0.82 kg, and 1.22 kg.

Some researchers have studied the sensory inputs used by people during
the transfer phase. Mason et al. [107] demonstrated that both the agents use so-
matosensory control to coordinate the transfer rate. Additionally, the giver uses
visual feedback-based anticipatory control to precisely time initial grip force re-
lease. In their study, during conditions where the giver moved the object toward
a stationary receiver, they noted a decoupling of the temporal and magnitude
characteristics of the grip and inertial forces. Parastegari et al. [130] found that
people primarily use visual feedback and not haptic feedback to detect the fall
of the object during the transfer phase of handovers. Controzzi et al. [36] stud-
ied the effect of the receiver’s reaching out speeds and the giver’s sensory input
conditions on the grip force modulation by the giver in human-human han-
dovers. They found that the giver’s speed of grip force release is correlated with
the receiver’s speed. Even when visual feedback is removed this correlation is
maintained but the release is delayed. They also found that shorter release and
handover durations and more reactive release behaviors are perceived as more

fluent.

Prior studies have found that the time required to transfer the object from

the passer to the receiver is between 300 and 500 ms [107, 30, 142} 119, [120].

2.2.5 Handover Location and Orientation

Much work has been done on investigating the handover location and orienta-

tion in human-human handovers. Basili et al. [7] and Hansen et al. [58] found
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that the handover location is typically at the midpoint between both actors.
Hansen et al.’s [58] studies revealed that the interpersonal distance between the
giver and the receiver is inversely proportional to the height of the handover
location, regardless of the object’s weight. Rasch et al. [141] observed that the
object is offered for transfer in two configurations, pronation where the object is
covered by the hand, and supination where the object is visible to the receiver.
Kato et al. [71}, 72] showed that humans are able to predict the handover loca-
tions of partners they have just met, even without any visual feedback. They
also found that the handover locations not only depend on the interpersonal
distance but also depend on characteristics such as height, gender, and social
dominance of both actors. Chan et al. [29] examined the handover orientations
of common objects during human-human handovers and noticed that the han-
dover orientations used by people for most objects follow observable patterns.
They also found that natural handover orientations may differ from orientations
that are convenient to the receiver and consider the usage of the object. Cini et
al. [34] studied the grasp types and grasp locations in human-human object han-
dovers. They found that the givers grasp the object in such a way that allows

the receiver to comfortably perform the subsequent task with that object.

2.2.6 Handover Strategies

Some researchers have examined the strategies that people employ while tran-
sitioning from one phase to another during a handover. Strabala et al. [162]
found that in a physical collaboration task involving handovers, people start the
reaching motion even before they finish the approach phase. Shi et al. [154, 153]]

investigated human-human handovers in the context of the distribution of ob-
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jects such as flyers to pedestrians. They found that in such scenarios the givers
exhibited four handover strategies: extend arm first and wait for the pedes-
trian; wait for the pedestrian and extend arm after they get close; extend arm
first and approach the pedestrian; approach the pedestrian and extend arm after
getting closer to them. Huang et al. [63] studied multiple sequential handovers
between two humans where the receiver had different levels of task demands.
They found that the givers employed a combination of two adaptive coordina-
tion strategies viz. waiting and slowing down. In the waiting strategy, the giver
waited for the receiver to complete their task by pausing their hand movement
either near the object’s pick-up location or in front of the body. In the slowing-
down strategy, the giver reduced their hand velocity while the receiver was

occupied with their task.

2.2.7 Non-verbal Communication

Surprisingly, non-verbal communication modes such as eye gazes, head move-
ments, or hand gestures have been rarely studied in the context of human-to-
human object handovers. Flanagan et al. [50] identified that during an object
passing task, human eye movements and gazes focused on the end location
where objects were placed rather than the grasped object and hand in motion.
They also found that the gaze reached the end location well before the hand but
exited at almost the same time. Similar eye movements were observed when
participants watched the other person do the task. The receivers in studies
conducted by Lee et al. [90] often signaled readiness by making a “grabbing”
hand gesture, especially for fragile objects. The givers looked at the object or

the receiver as they approached the receiver. In the case of a collaborative task,
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Macdonald et al. [99] observed that people more often gazed at the shared task
than at each others’ faces. Strabala et al. [162] suggested that gaze cues are used
to signal intent to start a handover, but they did not find mutual gaze to be an
effective predictor of handover intent. Shi et al. [154, [153]] investigated human-
human handovers in the context of the distribution of objects such as flyers to
pedestrians. They found that the givers kept gazing at the receiver to keep eye
contact until the handover finished. Moon et al. [115] studied the giver’s gaze in
human-to-human handovers and found shared attention and turn-taking gaze
to be the most frequent gaze cues during the handover. In shared attention gaze,
the giver looked at the projected handover location and in turn-taking gaze, the
giver initially looked at the projected handover location, and towards the end

of the handover motion looked up at the receiver’s face.

2.2.8 Miscellaneous

Some studies have revealed the effects of repeated trials and object’s weight
on the handover interaction. Shibata et al. [156] found that the duration of
handover decreased with multiple trials. Huber et al. [66, 64] found that the
reaction time and duration of the reach and transfer phases of the handover de-
creased over repeated trials. Endo et al. [42] observed that the giver’s grip force
at contact and the peak interaction force during contact gradually reduced over
repeated trials. Chan et al. [30] and Hansen et al. [58]] found that the weight of
the object affected the duration of the handover, with heavier objects having a

longer duration.
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2.3 Human-Robot Handovers

HRI researchers have studied human-robot handovers to understand human
preferences for robot behaviors in the approach, reach and transfer phases of
handovers. Some studies have also examined the robot’s non-verbal behaviors

in handovers, and coordination strategies for handovers.

2.3.1 Approach Phase

Studies of the approach phase have examined the robot’s direction of approach
and interpersonal distance at the end of the approach phase. Walters et al. [172]
found that most standing participants preferred a robot approaching from either
the left or the right side, instead of a frontal approach. Whereas, Koay et al. [75]
found that majority of seated participants preferred a robot approaching from
the front and handing over the object just below their chest level. Both these
studies found the preferred interpersonal distance between the human and the
robot to be within the personal distance (0.6m - 1.25m), suggesting that people
may treat robots similar to other humans. Koay et al. [75] also found that par-
ticipants’ personality traits such as Agreeableness and Openness influenced the

interpersonal distance of the handover.

2.3.2 Reach Phase

Studies of the reach phase have evaluated the effects of the robot’s veloc-

ity profiles and handover configurations on the fluency and subjective expe-
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rience of handovers. Shibata et al. [155] compared four velocity profiles in
one-dimensional robot-to-human handovers: triangle, trapezoid, and two bell-
shaped profiles, and found that participants preferred a bell shaped velocity
profile with the velocity peak at 30% duration. In their studies, the preferred
handover location was around 350mm from the person’s shoulder. Huber et
al. [66] found that in robot-to-human handovers, a minimum-jerk velocity pro-
file in spatial coordinates was perceived as safer than a conventional trapezoidal

velocity profile in joint coordinates.

Koene et al. [76] studied the effect of timing and spatial performance of the
robot on the human’s subjective experience of human-robot object handovers.
They found that the participants’ ratings of ease, satisfaction, comfort, and
safety were more strongly correlated with the timing parameters as compared to
the spatial parameters. Their results suggest that the speed of handover carries
greater importance than the accuracy of the robot’s reaching motion. Cakmak
et al. [19] studied the effect of spatial and temporal contrast in object configu-
rations for robot-to-human handovers. Spatial contrast means that the robot’s
handover pose is distinct from poses for other actions with that object, while
temporal contrast means that the robot has different poses during the approach
phase and at the end of the reach phase. They did not see any effect of spatial

contrast but found that temporal contrast improved the fluency of the handover.

Cakmak et al. [18] conducted a user study to learn human preferences to-
wards handover configurations in robot-to-human handovers. They found that
participants preferred robot configurations with higher arm extension, consis-
tency along the three coordinate axes, and higher resemblance to human con-

figurations. Pan et al. [125] found that speeds equal to or slower than human
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speeds and a human-like sensorimotor delay before beginning the handover

improved the perceived comfort during the handovers.

2.3.3 Transfer Phase

Studies of the transfer phase have investigated the effect of the robot’s grasping
or releasing behaviors on the subjective and objective parameters of human-
robot handovers. Pan et al. [124] [123] studied the effect of grasp type during
human-to-robot handovers on the interaction forces and the social perception
of the robot. Specifically, they studied two grasp types: quick grasp and mating
grasp. In quick grasp condition, the robot activated its electromagnetic gripper
as soon as it moved to within 1cm of the object’s end. In the mating grasp condi-
tion, the robot activated its electromagnetic gripper only after making co-planar
contact with the object. Surprisingly, the mating grasp was perceived as less
competent and more discomforting. The robot’s grasp type also affected the hu-
man’s retraction force, with larger retraction forces for quick grasps. They also
noted that the interaction forces were significantly higher than those encoun-
tered in human-human handovers. Han et al. [57] compared three release be-
haviors in robot-to-human handovers: “proactive” in which the robot released
the object when the rate of change of force at its end-effector went beyond a cer-
tain threshold, “passive” in which the robot released the object when the force
at its end-effector went below a certain threshold, “rigid” in which the robot re-
leased the object only after completing the reaching motion. They found that the
proactive release behavior resulted in quicker handovers and higher perceived

fluency and ease of taking.
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2.3.4 Miscellaneous

Some researchers have studied the effect of participants” experience of interac-
tion with the robot on the subjective and objective metrics of human-robot han-
dovers. Edsinger et al. [40] found that people hand over objects to a humanoid
robot without explicit instructions or expertise. They showed that people place
the objects directly in the robot’s hand, after it executes a predefined reaching
motion, and ensure an easy-to-grasp configuration. Borgsen et al.’s studies [189]
tested whether the participant’s prior experience of interaction with robots had
any effect on the object handovers. They found significant differences in the
behavior of naive users and experienced users, with naive users expecting the
robot to visually monitor the handover process instead of just using the force
sensor. Pan et al. [124] studied the effect of repeated handover trials on the
social perception of the robot. They found that repeated trials increased the
participants” comfort and emotional warmth towards the robot. The interaction
forces also decreased over repeated trials, indicating that people’s trust in the

robot increases, and they learn to predict the robot’s behavior over time.

2.3.5 Non-verbal Communication

Non-verbal communication consists of communication through modalities such
as eye gaze, head gaze, and deictic or pointing gestures. Some researchers have
studied the effects of robot gaze in robot-to-human handovers [1} 115, 188, 48,
83].

Admoni et al. [1] demonstrated that deliberate delays in the robot’s release

of an object draw human attention to the robot’s head and gaze, showing in-
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tentional communication through the gaze. Also, they found that such delays
increased the participants’ compliance with the robot’s gaze behavior. Moon
et al. [115] and Zheng et al. [188] demonstrated that gaze behaviors shown by
the robot giver can affect the human receiver’s experience and fluency of the
handover. Moon et al. compared three different gaze behaviors: the “shared-
attention gaze” in which the robot continuously looked at the handover loca-
tion, the “turn taking gaze” in which the robot shifted its gaze from the han-
dover location to the receiver’s face midway through the handover motion,
and the baseline “no gaze” condition in which the robot kept looking down
at the ground. They found that when the robot exhibited the “shared-attention
gaze”, participants reached for the offered object significantly earlier than the
other gaze conditions. Also, they found a statistical trend (p < 0.10) of partici-
pants preferring the “turn-taking gaze” over the other gaze conditions. Zheng
et al. [188]] extended this work and compared the “shared-attention” gaze with
a continual robot gaze at the human receiver’s face and a transitional gaze be-
tween the receiver’s face and the handover location. They found that for the
continuous face gaze condition the participants reached for the object even ear-
lier than the “shared-attention” gaze. They also found that when the robot
looked at the person’s face, either continuously or in combination with the
“shared-attention gaze”, the participants considered the handover to be more
likable and anthropomorphic, at p < 0.05 significance level. Zheng et al. [187]
analyzed the videos of Moon et al.’s [115] study of robot gaze behaviors in
robot-to-human handovers. Their analysis supported Moon et al.’s findings,
that the robot gaze affected the reaching time of the human. Additionally, they
found that the robot’s face gaze was effective in drawing people’s attention to

the robot’s face.
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Fischer et al. [48] compared two gaze behaviors of a robot tasked with re-
trieving parts instructed by the participants and found that when the robot
looked at the person’s face instead of looking at the movement of its own arm,
participants engaged more with the robot and felt more responsible for the task.
Kuhnlenz et al. [83] compared gaze behaviors of a humanoid robot in a fetch-
and-give scenario with the robot looking either towards the planned path or
towards the human’s face while approaching and handing over the object to the
human. They found that looking at the human’s face significantly increased the
anthropomorphism, animacy, perceived intelligence, and social presence of the

robot.

Other non-verbal gestures such as deictic or pointing gestures have rarely
been studied in the context of human-robot handovers. Borgsen et al. [189] in-
vestigated whether additional gestures with the robot’s second arm help syn-
chronization in human-robot handovers. Specifically, they implemented two
gestures: turning the hand in a presenting manner below the object to signalize
readiness and moving the hand in a protective way above the object to signal
that the robot is not yet ready. They found that though the participants per-
ceived the robot as more human-like when it exhibited additional gestures with
its second arm, those gestures did not have any significant effect on the syn-

chronization of the handover.

2.3.6 Handover Strategies

For tasks requiring multiple sequential handovers, such as a collaborative as-

sembly task, it is important for the robot to predict the timing of handovers.
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Then it can initiate the handovers just-in-time and contribute to the task fluently.
Therefore, some researchers have investigated different strategies for predicting
handover timing and coordinating multiple sequential human-to-robot and/or
robot-to-human handovers. Huber et al. [65] compared four different strategies
of timing in human-robot handovers: average time, in which the robot initiates
the handover after a fixed duration; sensor trigger, in which the robot initiates
the handover only after the human requests; component average time, in which
the robot uses precomputed durations of individual assembly steps to initiate
the handover; and predictive assembly duration, in which the robot uses a prob-
abilistic Bayesian framework in the form of a Kalman Filter to continuously up-
date the handover timing based on observed assembly cycle time. They found
that the predictive method outperformed the other three methods in terms of
handover efficiency and fluency. In a similar study, Tang et al. [166] compared
three methods of robot-to-human handover timing prediction in a repetitive as-
sembly task: sensor trigger, component average time, and predictive assembly
duration. They found that the predictive method was better in terms of average
cycle time and subjective preference than the first method, and comparable to
the trigger sensor method. They suggested that the predictive method would
be much easier to implement on a production line as compared to the sensor

trigger method.

Huang et al. [63] compared three robot-to-human handover strategies in a
scenario where the human receiver was occupied with a secondary task. Their
strategies involved: “proactive strategy” in which the robot started the han-
dover even if the receiver was not ready, “reactive strategy” in which the robot
started the handover only after the receiver was available, and “adaptive strat-

egy” in which the robot used waiting and slowing-down strategies (explained in

26



Section[2.2.6). They found that the proactive strategy resulted in better team per-
formance while the reactive and adaptive strategies offered a better subjective
experience to the user. Lambrecht et al. [86] compared a voice command strat-
egy with a reactive handover strategy and a manual assembly baseline. In the
voice command strategy, the human instructed the robot via voice commands
to achieve a just-in-time handover. They found that the participants were able
to predict the handover timing but it increased the cognitive load on them. Mar-
tinson et al. [105] investigated whether users prefer a robot with the capability
to execute more than one type of handover, and which factors influence the
choice of one type over the other. They specifically considered three types of
handovers: the robot approaching the human to deliver the object, the robot
asking the human to approach and take the object, and the robot placing the ob-
ject on the closest planar surface. They found that participants preferred a robot
with the capability to execute multiple types of handovers, and the factors that
influenced the preferred choice of handover interaction were the human’s activ-
ity and the location of the handover. Quispe et al. [136] extended this work and
proposed a method to learn human preferences for the type of handover inter-
action. They modeled the system as a Bayesian Network with inputs consisting

of a discrete set of the human’s activities and locations.

2.4 Models of Human’s Motion in Handovers

In order to generate appropriate robot behavior during handovers, it is impor-
tant to predict the human’s motion. Some researchers have proposed models of
human motion in the context of handovers. These models can be categorized

into three types: offline, online, and hybrid. Offline models predict the human’s
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motion and/or the handover location before the start of the handover and do
not update those predictions based on the observed motion of the human dur-
ing the handover. On the contrary, online models continuously update their
predictions taking into account the observed motion of the human during the

handover. Hybrid models use a combination of offline and online predictions.

Offline Models

Parastegari et al. [128,[130] proposed a model for predicting the giver’s reaching
motion and handover location, based on dyadic joint torques on the two actors
in handovers. Rasch et al. [141] studied the motion of individual joints dur-
ing a single-handed human-to-human handover. They proposed a five-degree

polynomial model for the human hand’s trajectory in a handover.

Online Models

Widmann and Karayiannidis [178] used Dynamic Movement Primitives
(DMPs) to model the human’s reach phase motion in human-robot handovers.
They used an extended Kalman filter for online estimation of DMPs’ point at-
tractor and timescale. Sheikholeslami et al. [152] used a planar elliptical model
to predict the human’s reaching motion in human-robot handovers. Wu et
al. [179] used Gaussian Process Regression (GPR) for online prediction of the
human’s reach phase motion during human-robot handovers. They optimized
the hyperparameters of the GPR model with an offline training phase and used
the observed human motion to make future motion predictions online. Med-

ina et al. [110] estimated the handover location online by modeling the human’s
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motion as a Linear Dynamical System (LDS).

Hybrid Models

Nemlekar et al. [118] developed a model for the prediction of handover location
during human-to-robot handovers. They used Multi-dimensional Interaction
Probabilistic Movement Primitives (Pro-MP) to model the reach phase of han-
dovers and trained the primitives with demonstrations of human-robot han-
dovers. At the beginning of the interaction, the handover location is predicted
offline, considering the giver’s kinematics, and it is updated dynamically dur-
ing the interaction based on the observed motion of the human. Simmering et
al. [158] developed a method to predict the handover location or object transfer
point (OTP) in human-initiated human-robot handovers. Their method con-
sists of two components: offline static OTP prediction and online dynamic OTP
prediction. At the beginning of the handover, they predict a static OTP at the
midpoint of the human’s and the robot’s position. This offline prediction is up-
dated based on the observed motion of the human during the handover. They

used a minimum jerk trajectory model for this online update of the OTP.

2.5 Controllers for Single Handed Human-Robot Handovers

Handovers being a fundamental action in physical human-robot collaboration,
the importance of this task has resulted in a large body of work on robot con-
trollers for handovers. These controllers use a variety of sensor interfaces such
as physical sensors, visual sensors, and wearable devices [89]. Researchers have

proposed various methods to detect the start of handovers, detect the transitions
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between phases, and control the robot in each of the handover phases.

2.5.1 Detection of Intent to Perform Handovers

Some researchers have developed methods to recognize the human’s intention
to start the human-to-robot or robot-to-human handover from visual, tactile, or
wearable sensor data. Pan et al. [126] developed a classifier to detect the giver’s
intent of handover for robot-to-human handovers. They used the human giver’s
kinematic features such as joint angles, distances of joints from each other and
from the receiver, and trained a Support Vector Machine (SVM) to recognize
the start of object handover. Wang et al. [175] developed a wearable sensor to
detect the human’s intentions during object handovers to a robot, and also en-
able the human to control the handover. The sensor provides measurements
of the human’s forearm postures and muscle activities, which are used to de-
tect intentions such as give, stop, continue, speed up and slow down. The robot
also uses this data to check if the object is graspable in terms of its dimensions
and weight. Davari et al. [37] used tactile sensor data from the robot’s fingers
to detect the type of interaction during the transfer phase of a robot-to-human
handover. They used the temporal tactile data stream and trained an SVM to
classify whether the object in the robot’s hand is being pushed, pulled, held, or

bumped by the human receiver.
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2.5.2 Reach Phase

Existing robot controllers for the reach phase of handovers can be broadly cat-
egorized into two groups: offline and online. Offline controllers (or open-loop
controllers) compute the robot’s motion plan before the start of the reach phase
and do not update it during the reach phase, whereas online controllers (or
closed-loop controllers) constantly update the robot’s motion plan during the

reach phase and take into account the observed behavior of the human.

Offline (open-loop) controllers can be further categorized into three types:

* Pre-programmed or hand coded controllers
¢ Optimization based motion planners

e Controllers learned from demonstrations or feedback

Online (closed-loop) controllers can be further categorized into two types:

e Controllers learned from demonstrations or feedback

* Velocity controllers towards human hand or predicted handover location

Offline: Pre-programmed or Hand-coded Controllers

In pre-programmed or hand-coded controllers, the handover configuration,
and sometimes even the velocity profile of the robot, is programmed manu-
ally. For example, Aleottie et al. [4] developed a controller for robot-to-human
handovers that plans robot motions to a predefined handover location and ori-

entation. Their controller also included the pick-up phase of the handover.
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As described in Section researchers have used pre-programmed or hand-
coded controllers to study different aspects of human-robot handovers like the
reach phase [155, 166} 18,19, [76]], the transfer phase [57], non-verbal communica-
tion [1, 115, (187 48, 188, 183] [189], effect of the human’s expertise [40, 189], and
handover timing strategies [63, (105, 86, [166].

Offline: Optimization based Motion Planners

Going beyond hand-coding the full robot trajectory, a few researchers have pro-
posed offline motion planners for the reach phase of object handovers. These
planners compute the handover configuration and the velocity profile of the
robot with the help of some predefined objective functions or constraints. Some
offline motion planners utilize the human kinematic or biomechanical models
to pose the planning problem as a constrained optimization problem. The mo-
tion plan is computed at the beginning of a handover and not updated during

the runtime.

Micelli et al. [112] used a randomized planner to produce collision-free and
reasonably smooth paths towards the initial position of the human hand in
robot-to-human handovers. Mainprice et al. [103] and Sisbot et al. [161] de-
veloped a motion planner for robot-to-human object handovers that calculates
visible, safe and comfortable robot paths. They defined three constraints in the
form of cost maps: distance, visibility, and comfort, and used them to compute
the object transfer point as well as the robot’s trajectory. Mainprice et al. [102]
developed a motion planner for robot-to-human handovers that considers hu-
man mobility, to choose the appropriate handover configuration and robot tra-

jectory. They evaluated this algorithm in human participant experiments and
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found that accounting for the human’s mobility resulted in more fluent and ef-
ficient handovers. Cakmak et al. [18] used the kinematic model of the human to
compute robot motions in robot-to-human handovers, optimizing ease of tak-
ing. Aleotti et al. [3] developed a motion planner for robot-to-human handovers
that calculates robot paths considering the most convenient object orientation.
In their user studies, the participants reported that the robot offered objects in a

comfortable way and complied with their affordances.

Suay and Sisbot [164] developed an approach to estimate personalized hu-
man biomechanical models and to compute the handover location that mini-
mizes the static load on the human in robot-to-human handovers. Peternel et
al. [131] used a human biomechanical model to compute the handover location
that minimizes the load on the human’s joints. Bestick et al. [10] developed a
framework for selecting object handover configurations in robot-to-human han-
dovers that minimize the ergonomic cost to the human, both during the transfer
phase of the handover and placement of the object at its target. Their studies
showed that participants preferred this method over handover configurations
that only maximize the number of grasping locations available to the human

during transfer.

Walker et al. [171] and Rahman et al. [137] developed a motion planner for
robot-to-human handovers that considers the human’s trust in the robot, to
adapt the robot’s handover motions. Specifically, for low trust, the robot per-
forms cautious handovers characterized by reaching motions with lower speeds
and handover configurations that reduce potential impact forces on the human.
They evaluated this motion planner in an assembly task and found that it im-

proved the perceived safety, human trust in the robot, handover success rate,
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and overall assembly efficiency. Pyo et al. [135] developed a motion planner for
a fetch-and-give task with a wagon and a service robot. Their planner calcu-
lates the motion plans for the robot to grasp the wagon, approach the human
while pushing the wagon and deliver an object from the wagon to the desired
position. The planner considers collision avoidance and manipulability of both
the agents. Waldhart et al. [170] proposed a graph-based planner for situations
requiring several sequential handovers between multiple agents (both humans
and robots). Their method computes the sequence of agents, handover loca-
tions, and motion plans for the robot. The robot motions are computed with

collision avoidance and considerations of human comfort and safety.

Offline: Controllers Learned from Demonstrations or Feedback

Another direction of research has focused on learning the reach phase motions
from demonstrations of human-human handovers or human-guided robot mo-

tions.

Cakmak et al. [19] identified the robot’s poses for the approach and reach
phases of handovers from a user survey, and used an existing motion planner [9]
to execute the handovers. Cakmak et al. [18]] obtained robot-to-human handover
configurations from demonstrated good handovers. They found this approach
resulted in handovers with higher rankings of liking, naturalness, and appro-
priateness but less reachability, as compared to an optimization-based motion
planner that used the human kinematic model to optimize ease of taking. In
Koay et al.’s [75] studies investigating the location of a robot handing over ob-
jects to a seated human, the participants interactively created the robot’s hand-

ing over motion. Similarly, Rasch et al. [144] asked participants to interactively
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guide a humanoid robot into different handover configurations and label the
configurations as proper or improper. They found that the proper handover
configurations can be grouped into three clusters, each differing primarily in
the rotation of the forearm. The combination of object type and grasp type was
strongly correlated with the cluster of handover configurations. Also, the height
of the handover configuration was found to depend on the height of the receiver

and the receiver’s posture (sitting or standing).

Momi et al. [38] used a neural net to generate human-like reaching motions
of a robot arm given a target position. They used three feedforward perceptron
neural networks (NNs) to acquire the trajectories for the x,y, and z axes. They
trained the NNs with recorded trajectories of the reaching behavior of a person.
Tang et al. [165] used a Continuous Time Recurrent Neural Network (CTRNN)
to learn robot-to-human handover trajectories with obstacle avoidance. They
trained the CTRNN with motion sequences gathered via human-guided motion
for three different obstacle heights. In the testing phase, the network would gen-
erate the robot’s joint trajectory for a given obstacle height. Both Momi et al.’s
and Tang et al.’s controllers are black box approaches and the robot’s trajectory

cannot be modified without retraining the network.

Rasch et al. [142] developed a joint motion model for robot-to-human
handovers from motion profiles of human joints in human-human handover
demonstrations. They modeled the shoulder joint motion and adduction with
a sigmoid function, and the elbow joint and pronation-supination with a poly-
nomial function. Their studies revealed that on an industrial robot this joint
motion model was perceived to be significantly safer than a linear joint space

trajectory. They used a predefined handover location in their studies. Rasch et
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al. [143]] proposed a combined Cartesian and joint motion model for the reach
phase of human-robot handovers. Their controller computes the robot’s trajec-
tory towards a predefined target with a predefined duration. Both the compo-
nents of the model, Cartesian and joint motion, are learned from demonstrations
of human-human handovers. They suggested that such a combined model has
advantages like anthropomorphic joint-state motion as well as obstacle avoid-

ance in the Cartesian space.

Bestick et al. [11] developed a method to learn peoples” preferences of han-
dover configurations in robot-to-human handovers. They formulated an online
Bayesian inference problem to learn the ergonomic cost function of the human
associated with handover configurations. They proposed two approaches for
making queries: a passive approach in which the robot always tried the most
comfortable configuration for the person and an active approach in which it
tried the configurations with the highest expected information gain. They found
that in simulations the active approach learned faster than the passive approach,
but with real humans, the difference was very subtle. Chan et al. [28]] proposed a
method to learn appropriate handover configurations for robot-to-human han-
dovers from demonstrations of natural handover orientations used by people.
They used the idea of affordance axes to determine the quality of a set of ori-
entations and developed a method to compute the mean orientation of that set.
Their tests on a set of handover data revealed that their method gives better re-
sults in terms of receiver-centered orientations from observations of handovers.
Chan et al. [27] developed a framework for learning handover configuration
i.e. grasp location and orientation, for robot-to-human handovers from human
demonstrations. Their system does not require additional cameras or markers

and only uses a skeleton tracker and a particle filter-based object tracker. How-
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ever, the object needs to be placed on a table for initial detection and the system
cannot learn multiple handover configurations for the same object. Chan et
al. [26] presented a method to determine appropriate object configurations for
robot-to-human handovers. During the training phase, they used affordance
information from demonstrations of the object’s usage, and object handover
configurations from human demonstrations. They generalized the appropriate
handover configurations to new objects by grouping objects according to their

affordances.

Online: Controllers Learned from Demonstrations or Feedback

The offline controllers that are learned from demonstrations, as described
above, do not update the robot’s motion plan during the handover. To over-
come this drawback, some researchers have proposed methods to learn online

controllers from demonstrations of human-human handovers or from human

feedback.

Some researchers have used movement primitives to imitate the demon-
strated human reaching motions in handovers. Prada et al. [132] used Dynamic
Movement Primitives (DMPs) to model the reaching motion of a human in ob-
ject handovers. They modified the original DMP formulation of Schaal [150]
by changing the weights of the two components of the DMP system, such that
it resulted in a predominantly feedforward motion in the earlier phase and a
predominantly goal-directed motion towards the end. They also added a ve-
locity feedback term to consider the target’s, i.e. the human hand’s, velocity
for smoother motion and convergence. They showed that the predictions of

this model matched well with the ground truth data of human-human object
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handovers. Extending this work, Prada et al. [133] implemented and evalu-
ated a control system for human-robot handovers based on DMPs. This strat-
egy produces robot motions similar to human demonstrations with the human
hand as the target, thus maintaining a feedback mechanism for changes in han-
dover location to provide flexibility. Maeda et al. [100} 44} 101] used Proba-
bilistic Movement Primitives (ProMPs) for imitation learning of human-robot
interaction tasks such as handovers. Their controller produces robot trajectories
towards the observed location of the human hand, such that the robot motion
is similar to the training demonstrations. They compared ProMPs with DMPs
and found that ProMPs are better at dealing with noisy data and/or data with
interruptions. Vogt et al. [169] demonstrated an imitation learning methodol-
ogy to learn parameters for the reach phase trajectory of human-to-robot han-
dovers, from a single human-to-human handover demonstration. Their method
involved the generation of triadic interaction meshes (IMs) to link the interac-
tion partners with the transferred object. During human-robot handovers, these
IMs are used to synthesize the robot’s motion corresponding to the observed hu-
man motion. Their controller resulted in a higher success rate, faster interaction,
better spatial generalization, and lower frustration for the user, as compared to
the controller used by Huang et al. [63] and traditional IMs [61]. However, this
approach requires one demonstration for each object and is limited in terms of

generalization of the learned handover over different locations.

Some researchers have used reinforcement learning techniques to learn a
policy for the reach phase of handovers from human feedback. Kupcsik et
al. [84] presented an algorithm to learn a latent reward function for robot-to-
human handovers under dynamic situations and noisy human feedback. In this

approach, the robot learns the policy for selecting handover controller param-
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eters given the context. The latent reward model for updating the policy from
human feedback incorporates both absolute feedback and preferential feedback.
Riccio et al. [147] developed a method to train a policy for human-robot han-
dovers and also learn spatio-temporal affordance maps for the robot’s actions.
They used a reinforcement learning approach, i.e. iteratively improve the pol-
icy, given a reward function, by executing the policy in the real world or simu-
lation. Their method can take into account prior knowledge in the form of an

initial data set of samples.

Other approaches have used dynamical systems, look-up tables, or neu-
ral networks to encode the demonstrations and generate robot motion in the
reach phase. Medina et al. [110] employed a Coupled Dynamical System (CDS),
learned from human-human demonstrations, to drive the robot towards the
predicted handover location. Sidiropoulos et al. [157] proposed an online con-
troller for robot-to-human handovers that utilized a Dynamical System (DS),
learned from human demonstrations of handovers, for generating the reach
phase motion of the robot. The DS generates the target velocities for the robot
end-effector, considering the position and orientation of the human hand. Ya-
mane et al. [180] developed a method for generating humanoid robot motions
for human-to-robot handover by looking up the passer motion in a human-
motion database. Zhao et al. [186] developed an online controller for human-
robot handovers that used Recurrent Neural Network with Long Short-Term
Memory units (LSTM-RNN). The network learns the interaction model through
offline training with demonstrated human-robot handovers. The robot is oper-
ated via a kinesthetic teaching interface during the training phase. Their user
studies showed that this controller is more accurate than a controller based on

ProMPs [100]. Yang et al. [182] learned a deep model of the grasps from a dataset
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of human grasps, and used it to plan the robot’s reach phase motion. Their user
study revealed that their controller resulted in more fluent handovers than base-
lines which used a fixed grasp configuration and a grasp position inferred from

the human hand pose.

Online: Velocity Control towards Human Hand or Predicted Handover Loca-

tion

The simplest online controllers for the reach phase of handovers have used a
visual servoing approach i.e. driving the robot towards the human hand (for
robot-to-human handover) or the object (for human-to-robot handover). Micelli
et al. [112] presented a visual servoing controller for human-to-robot handovers.
This controller updates the robot’s motion plan continuously by generating ve-
locities proportional to the error between the human hand’s position and the
robot gripper’s position. In their user studies, they found that this controller
had a higher handover rate as compared to an offline motion planner (men-
tioned in Section [2.5.2), but it had a lower handover success rate. Also, the
offline motion planner was perceived as more aggressive, in comparison to the
online velocity controller. Bdiwi et al. [8] also used visual servoing towards the
human hand (human-to-robot handovers) or the object (robot-to-human han-
dovers) during the reach phase of handovers. They included collision avoidance
with the human body as a safety measure by combining the visual and force
sensor data. Their controller also performed the pick-up or drop-off phases of
handovers with visual servoing. Pan et al. [124} 123] and Melchiorre et al. [111]]
also used proportional velocity control to drive the robot towards the human

hand or the object in the reach phase.
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Instead of using a proportional velocity controller, some researchers have
used other velocity profiles to drive the robot towards the human hand/object
or the predicted handover location. He et al. [60] developed an online controller
for the reach phase of human-robot handovers. Their approach generates robot
motion online by joining up the target trajectory or a target point, provided
by a human-aware offline motion planner, from the current state. Their con-
troller can perform target tracking, trajectory tracking in task frame, and path
re-planning and trajectory switch, in case of movement of obstacles. Fishman
et al. [49] developed an online trajectory planner for the reach phase of human-
robot handovers. They used Model Predictive Control (MPC) algorithm to si-
multaneously predict the human’s reaching motion and plan the robot’s move-
ment towards the human’s predicted position. Pan et al. [125] proposed an
online controller for bi-directional human-robot handovers. They used Bézier
curves to generate smooth minimum-jerk motions during the reach phase, ini-
tially towards an expected handover location and eventually converging to the
human hand. Scimmi et al. [151] developed an online controller for the reach
phase of human-robot handovers. They used a smooth predefined velocity pro-
file for the robot end-effector, as a function of the distance between the end-

effector and a location close to the human’s hand.

Miscellaneous

Marturi et al. [106] developed a two-layered controller for the reach phase of
human-to-robot handovers. Their controller generates feasible grasp locations
for unknown objects offline and tracks the object online to plan robot mo-

tion towards a grasp location that minimizes task space error. The controller

41



switches between two planners: a local planner that continuously plans robot
motion towards the current grasp location, and a global planner that switches
the grasp location if the current grasp becomes infeasible. Erden et al. [43] de-
veloped a fuzzy-logic-based controller for the approach and reach phases of
two-dimensional human-robot handovers. Their controller used a multi-agent
system with individual joints treated as different agents. They tuned the param-
eters of the controller with the genetic algorithm to minimize deviation from a
direct path, time duration, and energy consumption during the handover. Wu et
al. [179] developed an impedance controller for generating the robot’s reaching

motion in response to the human’s motion.

2.5.3 Transfer Phase

Existing controllers for the transfer phase of handovers can be broadly cate-
gorized into four groups: position controllers with position feedback, position
controllers with force feedback, force controllers with force feedback, and force
controllers with multiple feedback modalities. Position controllers either use
position feedback or force feedback and control the gripper fingers’ positions to
trigger the grasp/release of the object during the transfer phase. While these
approaches are simple to implement, they are limited in terms of the haptic in-
teraction that characterizes the transfer phase. Force controllers overcome these
limitations by controlling the grasping force applied by the robot on the object,
with feedback from force sensors or a combination of multiple tactile and posi-

tion sensors.
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Position Controller with Position Feedback

Kim et al. [74] developed a grasp planner for the transfer phase of human-robot
handovers, which controls the position of the gripper with visual feedback of
the object. Their planner works for parallel jaw grippers and polyhedral ob-
jects. Their controller takes into account etiquettes such as object shapes, object
functions, and the safety of the human. Aleottie et al. [4] used feedback from a

range sensor to detect the human grasp and trigger the release of the object.

Position Controller with Force Feedback

Many researchers have used a position controller that triggers the open-
ing/closing of the gripper when the external force on the gripper exceeds a
threshold [8, [77, 189, 57, 125, [157]. The threshold for triggering the action is

typically derived from experimentally collected data for the specific robot.

Force Controller with Force Feedback

Some researchers have proposed force controllers to modulate the grasping
force as a function of the external force on the gripper [40,31}/134,41] or the load-
share i.e. the proportion of the object’s weight supported by the robot [110 84].
Edsinger et al. [40] used a force controller to compliantly grasp the object
handed over by the human. Chan et al.’s [31] controller modulated the applied
grip force as a linear function of the measured load on the robot’s gripper. The
parameters of the function were obtained from their previous studies of human-
human handovers [30]. Their user studies revealed that participants preferred

this controller as compared to a constant grip-force controller. Psomopoulou
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and Doulgeri [134] used fingertip rolling to grasp the object and developed a
force controller to modulate the grasp force with a rolling contact as a function
of the estimated load of the object’s weight. The object’s weight and shape are
not known apriori. However, their approach applies only to two-dimensional
grasps. Eguiluz et al. [41] controlled the grasping force as a function of the
applied force perturbation direction. They used tactile sensing to detect the
direction of external forces and joint effort control to manipulate the grasping
force. The parameters for their algorithm were obtained from controlled exper-
iments. The parameters need to be tuned for the specific handover scenario and
individual human. Medina et al. [110] used insights from human-human han-
dovers to control the robot’s grip force as a function of the load-share estimate.
They found that this approach reduced the transfer duration and internal forces
between the robot and the human, as compared to a force threshold-based con-
troller. Kupcsik et al. [84] used reinforcement learning to tune the parameters
for their force controller, which modulated the grip force as a linear function of

the load-share estimate.

Force Controller with Multiple Feedback Modalities

Some researchers have proposed to use feedback from multiple types of sen-
sors to modulate the grip force during the transfer phase of handovers. Grigore
et al. [55] proposed a two-layered controller which included the human’s eye
gaze and head orientation, in addition to the force applied by them, to trigger
the release of the object. Their experiments demonstrated that this approach
improved the success rate and safety of handovers. Parastegari et al. [129] pro-

posed a controller with re-grasping capability to ensure fail-safe human-robot
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handovers. They used an optical sensor to monitor the object’s acceleration and
to detect object-fall resulting from an imperfect handover. Their controller com-
bined the acceleration sensing with a force sensor attached to the wrist of the
robot and adjusted the grip force to ensure a safe transfer of the object to the

human.

Miscellaneous

Other miscellaneous controllers for the transfer phase of handovers have used
electromagnets [124, 123], soft gripper [13], and vibration sensing [160]. Pan et
al. [124] 123] used an electromagnet to grasp the object in the transfer phase.
They used both force and position feedback to activate the electromagnet.
Bianchi et al. [13] developed a controller for grasping the object with a soft
gripper during the transfer phase of human-to-robot handovers. They created
grasp primitives from human-guided demonstrations of object grasps with a
soft robotic gripper. Their method used acceleration contact signals from the
robot’s fingertips, wrist motion, and hand closure commands to train the grasp
controller. Singh et al. [160] developed a sensor for detecting interaction forces
during the transfer phase of a robot-to-human handover. Their system consisted
of a vibrator on one finger of the gripper and an accelerometer on the other fin-
ger. Based on the vibration analysis, this setup detected the type of interaction

among grasp, touch, rest, and hit.
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2.6 Two Handed Human-Robot Handovers

Some researchers have studied human-robot handovers of objects requiring
two-handed grasps. Kim et al. [74] developed a grasp planner for the trans-
fer phase of two-handed human-robot handovers. They control the position
of the gripper with visual feedback of the object taking into account etiquettes
such as object shapes, object functions, and the safety of the human. However,
their planner works only for parallel jaw grippers and polyhedral objects. Be-
stick et al. [12] developed an approach to estimate personalized human kine-
matic models, and used these models to compute the handover location in
two-handed robot-to-human handovers. Salehian et al. [159] developed a con-
troller for bimanual coordinated reaching behaviors of a robot towards a mov-
ing object. They proposed a linear parameter varying dynamical system for
generating the robots” motions towards a virtual object that asymptotically con-
verges to the real object. The parameters of the dynamical system are estimated
from kinematically feasible demonstrations with gaussian mixture regression.
They extended this approach to include both asynchronous (independent) and
synchronous (co-ordinated) bimanual motions [149]. They also devised a data-
driven centralized IK solver for self-collision avoidance. The drawback of this
approach is that the motion of the robots is not human-like. Also, the feasible

reaching points on the object have to be manually defined by the user.
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CHAPTER 3
TIMING-SPECIFIED CONTROLLERS WITH FEEDBACK FOR
HUMAN-ROBOT HANDOVERS

3.1 Introduction

We present two controllers for human-robot handovers, in which end-users can
specify the robot’s behavior in terms of reach-to-handover timing parameters,
along with two studies evaluating the controllers” performance. Prior studies
of human-robot handovers did not consider scenarios where participants need
to design the robot’s handover controllers for a collaborative task with timing
constraints. Such flexibility is important in industrial settings with dynami-
cally changing task requirements, and it can increase the acceptance of robots
as coworkers. The majority of existing handover controllers require tuning non-
intuitive controller parameters to specify the robot’s behavior, for example, pro-
portional gain [112, 8, 111}, 110] or Dynamic Movement Primitive (DMP) pa-
rameters [132,[76]. Some researchers have proposed handover controllers with
intuitive parameters, for example, timings of different phases of handovers [80]
and delay/reach timings [125], but these controllers were not evaluated experi-

mentally in scenarios where end-users can specify these parameters.

Our proposed controllers not only allow users to specify intuitive timing
constraints for the object handover but also provide feedback to the end-user

if they cannot satisfy those constraints, which can be used to better tune the

A substantial portion of this chapter is taken from [82] ©2022 IEEE. Reprinted, with per-
mission, from A. Kshirsagar*, R. Ravi*, H. Kress-Gazit and G. Hoffman, “Timing-Specified Con-
trollers with Feedback for Human-Robot Handovers”, IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN), Naples, Italy, 29 August-2 September 2022
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controller. We use Receding Horizon Control (RHC), also known as Model Pre-
dictive Control (MPC), to generate the robot’s closed-loop motion towards the
human’s hand from the user-specified timing constraints. We implement the
controllers on a collaborative robot with two different motion strategies, en-
coded as objective functions and timing constraints: minimum cumulative jerk
(MCJ) and minimum cumulative error (MCE). In the MC]J strategy, the users
can specify the maximum reaching time of the robot and the controller gener-
ates a minimum jerk trajectory towards the human hand within the specified
time limit. In the MCE strategy, the users can specify a stall time along with the
maximum reaching time of the robot and the controller generates a trajectory

with a minimum cumulative error from the human hand.

We conduct two studies to evaluate the user experience and task perfor-
mance with each motion strategy. In our studies, users interact with a physical
robot to handle time-sensitive “vaccine vials,” which have a minimum and a
maximum air exposure time. The vials need to be packaged at a variety of loca-
tions, making the robot’s handover strategy sensitive to the object and the final
location. Participants design the robot’s handover behavior by specifying the
controller parameters for each controller and then have to use the controllers
they tuned to perform the collaborative vaccine packaging task. Motivated by
the fixed-pay and incentive-pay compensation schemes, we consider two sce-
narios of the task: first, users tune the controller parameters only for success-
fully performing the task, and second, they optimize the controller parameters

to reduce the task duration and earn additional monetary rewards.

Each of the two controllers is compared to a baseline proportional velocity

(PV) controller, a commonly used closed-loop controller for generating reach-
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to-handover motions [112, [111]]. In the PV controller, the robot’s instantaneous
cartesian velocity is proportional to the distance from the human’s hand, and

the users can tune the proportional gain.

We find that the timing controller with the MCE strategy can provide a better
user experience and fewer failures compared to the PV controller, but we did not
find any evidence to support that the timing controller with the MCJ strategy

performs better than the baseline PV controller.

Note on contributions

This work was done in collaboration with Rahul Ravi (Master of Science, Me-
chanical Engineering, Cornell University, 2021). Both collaborators had an equal
contribution in the experiment design and data collection. The controllers and
experiment design is described in detail in [145], and this chapter provides a
shortened description for completeness. This chapter presents additional re-

sults that are not in [145].

3.2 Handover Controllers with Timing Parameters

We hope to understand how to design handover controllers that can be tuned
intuitively by end-users. We seek to investigate how user-specified timing con-
straints should translate into controller parameters in a way that results in a
high user experience and an efficient and useful controller. Our controllers in

this study focus on the “reach” phase of the robot-to-human handover.
We propose two MPC [20] closed-loop controllers with reach time param-
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eters for generating reach-to-handover motions of a robot. The MPC frame-
work computes control inputs u..y;—; for a given time horizon of length L, so
that these controls optimize an objective function J under a set of IV constraints
{h1,..., hn}. The objective function and constraints are defined over the system

state x, at time step ¢ and the control input. Formally, MPC solves

minut:t“,l Jetrr—1 (Xt, ut:t+L71>; (3-13)

s.t. hn(xi,u;) <0, Vielt,t+L—1], Vn e [1,N] (3.1b)

We formulate two instances of the MPC optimization problem for a robot’s
reach-to-handover motion generation. The two instances differ in terms of the
objective functions and timing parameters that are specified by the user. We
convert these timing parameters into MPC constraints, and the constrained op-
timization problem is solved at each time step in a receding horizon mode. The
control input is given as the robot’s end-effector velocity. If there is no feasi-
ble solution to the optimization problem at any time step, feedback is provided
to the user that the robot is unable to reach the handover location within the

specified constraints.

3.2.1 Minimum Cumulative Jerk (MCJ) Controller

In our first MPC implementation, users can specify the maximum reaching time
of the robot and the controller generates a minimum jerk trajectory towards the
human hand. Minimum Jerk is one of the most prominent models of point-to-
point human arm movements [51} 156, [173]. Given a maximum reaching time,

this controller should generate a smooth trajectory toward the human’s hand.
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To maintain smoothness (i.e., minimize jerk), this strategy tends to generate a
slow robot motion that still stays within the timing constraint. Formally, the

MPC objective function and constraints for this strategy are given by:

L-1
min » i, (3.2)
=0
s.t.
Xiitrl = Xgag -+ utﬂ'At Vi € [0, L— 1]7
(3.3a)
(System Dynamics)
[0 | < tmae Vi € 10, L — 1],

(3.3b)

(Velocity Limit)

Xp = [pxap apz] )
! (3.30)

(Initial End Effector Position)
Uy = [07 Oa O]T )
(3.3d)
(Zero Initial Velocity)
X reaen—1 = Dy 1| < €a,
(3.3e)
(Get Near Human Hand at Reach Time)

101l < €

" (3.3f)

(Reach Velocity near Zero)

In the above formulation, the current time step is ¢, the prediction horizon
is L, At is the time step size, u is the control input i.e. robot end-effector’s
velocity, Umax is the maximum permissible speed of the robot’s end-effector,
x is the position of the robot’s end-effector, [p,,p,,p.] is the initial Cartesian

position of the robot’s end-effector, i,... is the time step corresponding to the
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user-specified reach time ¢,, h is the position of the user’s hand, ¢, and ¢, are

the position and velocity tolerances.

3.2.2 Minimum Cumulative Error (MCE) Controller

Our second MPC implementation uses a minimum cumulative error (MCE) op-
timization strategy, meaning that the robot will try to minimize the total dis-
tance from the human hand over the whole trajectory. In contrast to the smooth
but slower trajectories produced by the MCJ controller, we expect the MCE con-
troller to generate fast robot trajectories, as these will have the lowest cumula-
tive error. To allow users to also tune the lower bound of the reach time, users
can specify a stall time along with the maximum reaching time of the robot and
the controller generates an MCE trajectory after stalling for the specified amount

of time.

Formally, the MPC objective function for this strategy is represented by,

L-1

min » *[|x; i — hy” (3.4)

1=0

The constraints are identical to the MCJ formulation, with one exception:

Eq.[3.3d]is replaced by,

u; = [07 07 O}T Vi e [Oa Ustall — 1] ) (35)

which means that the robot end-effector’s velocity is 0 for the user specified

time steps 7gq1-
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3.2.3 Baseline Controller

To evaluate the user experience and task performance of the two timing con-
trollers, we compare them with a proportional velocity (PV) baseline controller.
PV is a widely used closed-loop controller for generating reach-to-handover
robot motions [112) [111]. This controller commands the robot’s instantaneous
Cartesian velocity u; to be proportional to the distance between the robot end-

effector’s position x, and the position of the human’s hand h; i.e.,
u; = k?p||Xt - ht||7 (3.6)

where £, is the user specified proportional gain. The control input is limited by

the maximum permissible velocity of the end-effector, i.e., ||| < wpqs-

3.3 Study Design

We conducted two studies to compare the user experience and task performance
of our proposed timing controllers with the baseline PV controller in an indus-
trial task simulated in a lab setting. The first study evaluated the MCJ controller
and the PV controller, and the second study evaluated the MCE controller and
the PV controller. In each study, we performed this comparison in two scenar-
ios: first, a “non-optimization” scenario where users need to tune the controller
parameters to successfully perform the task, but not necessarily in the shortest
possible time, and second, an “optimization” scenario where they need to opti-
mize the controller parameters to reduce the task duration and earn additional
money. Our study design was motivated by these research questions: Whether

and to what extent do the proposed controllers offer a better user experience
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than a baseline controller? Whether and to what extent do the proposed con-

trollers improve efficiency of handovers as compared to a baseline controller?

3.3.1 Hypotheses

Since the timing controllers allow users to specify intuitive parameters and pro-
vide feedback to the user, we hypothesize that H1: A timing controller will provide
a better user experience than a PV controller. We formulate similar hypotheses for
three components of user experience: efficiency, perspicuity, and dependabil-
ity. Hla: A timing controller will have higher efficiency than a PV controller. Hlb:
A timing controller will have higher perspicuity than a PV controller. Hlc: A tim-
ing controller will have higher dependability than a PV controller. Since the timing
controllers allow users to specify time constraints on the robot’s motion, we hy-
pothesize that H2: A timing controller will have lower failures in a time-constrained
task than a PV controller. We do not expect the timing controller to generate
slower trajectories than a PV controller. Thus, we hypothesize that H3: A timing
controller will not have a higher task duration in a time-constrained task than a PV
controller. H4: A timing controller will not have higher human idle time in a time-
constrained task than a PV controller. H5: A timing controller will not have higher
robot idle time in a time-constrained task than a PV controller. We preregistered
on a public experimental registryf]] The experiment protocol was approved by

Cornell University’s Institutional Review Board for Human Participants.

https:/ /aspredicted.org/blind.php?x=5uk95q
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3.3.2 Collaborative Task with Time Constraints

We tested the different robot controllers in a human-robot collaboration task
consisting of object handovers from the robot to the human. The task simulates
a scenario of vaccine packaging in the pharmaceutical industry: A person and
a robot work together to transfer vaccine vials from a storage location to differ-
ent packages while ensuring that vaccines do not get over-exposure or under-
exposure to air, i.e., the handover time of the vial from the robot to the human
falls within acceptable bounds. The experiment setup, as shown in Fig. 3.2 con-
sists of three types of vaccines, G (green), Y (yellow), and R (red), and three
packaging stations at different distances from the storage rack. The robot arm
picks up the vials sequentially from the storage rack and hands them over to
the person who has to place the vials in the packaging stations. One limitation
of the MCE, M(]J, and PV controllers is that they do not consider the 3D orien-
tation information, and the robot always has a fixed orientation in our studies.
The person is not allowed to enter the refrigeration zone around the storage
stack, and if their hand is in this region the system generates a loud beeping
sound. The robot starts the handover only if the person’s hand is in the reach-
able workspace of the robot. The handover time for each vial depends on the
parameters of the robot’s controller which are specified by the user before per-
forming the packaging task with the robot. Each vaccine has a different range
of permissible exposure constraints, shown in Fig. therefore requiring dif-
ferent time spans for the handover. For example, the green vaccine needs to be

handed over within 1 to 4 seconds.

In each study session, there were two types of rounds for each controller:

design and test. Users tuned the controller parameters in the “design” round
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Figure 3.1: Graphical Interface showing the time constraints for each vaccine

and performed the vaccine packaging task in the “test” round. In the design
round, users could tune the controller parameters by performing handovers
with different vaccine vials at the different packaging stations and observing
the handover time. Once the design round was over, the controller parameters
were locked-in for the subsequent test round. In the test round, users needed
to place a set of vaccine vials, handed over by the robot, in three different pack-
aging stations following a predefined sequence. In each study session, there
were two types of test rounds: non-optimization and optimization. In the de-
sign round before the non-optimization test round, users tuned the controller
parameters so that the vials are handed over within the timing constraints, but
not necessarily in the shortest possible time. In the design round before the op-
timization test round, they re-tuned those controller parameters to perform the

vaccine packaging task in the shortest time.

3.3.3 Monetary Incentive Scheme

For more external validity, we designed a monetary reward system to incen-
tivize participants in the optimization test round: If they performed the task
faster than a specified time limit, participants would get $1 per second less than

the specified time limit. For each second spent by the user in the unsafe refriger-
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ation zone, they were penalized by $1. Each failed handover incurred a penalty

of $2.

Interface

Packaging - | :
Station 1 P el Packaging
/ N {84 Station 3

Packaging
Station 2

Figure 3.2: The experiment setup consisted of a stack of vaccine vials, three
packaging stations, a Kinova Gen3 robot arm, a screen to display Uls, and an
OptiTrack system. The participants were penalized if they entered the area in-
side the blue tape i.e. the unsafe zone.

3.3.4 Robot and User Interface

We implemented the MCE, MC]J, and PV controllers in the Python program-
ming language, and programmed a Kinova Gen 3 robot using the Robot Oper-
ating System (ROS) to perform the vaccine packaging task autonomously with a

human. We used an OptiTrack system to track the human hand and the robot’s
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gripper. The robot released the vial if the human’s hand was within a certain dis-
tance from the robot’s gripper. We developed graphical interfaces in Qt for each
controller. The timing constraints and the controller parameters of each vac-
cine are shown in Fig. 3.3/ (PV controller), Fig.[3.4] (MC]J controller), and Fig.
(MCE controller). During the design rounds, the Ul display screen showed the
controller interface, current handover timer, design round countdown timer,
packaging sequence, and time constraints for each vaccine. In the test rounds,
only the controller interface, vaccine packaging sequence, and time constraints

for each vaccine were shown.

3.3.5 Human Motion Model

The MCE and MCJ controllers can utilize a prediction model of the human
hand’s motion in the reach phase of a handover. In our pilot trials, we observed
that the users reached the handover location much faster than the robot, and
waited for the robot at the handover location. Therefore in our studies, we used
a static model of the human hand’s position h over the prediction horizon L,
given by,

hy; =hVi € [0, L — 1] (3.7)

The human hand’s position is updated at each time step using the observations

from the OptiTrack system.

58



3.3.6 Experiment Procedure

Participants signed a consent form, read study instructions, and then performed
an unrecorded practice session consisting of a design and a test round with
a dummy controller to get familiarized with the experiment setup. The main
part of the experiment consisted of two pairs of design and test rounds, one
for each controller. The first test round was the non-optimization round and
the second test round was the optimization round, as described in Section [3.3.2]
and Section The participants did not know about the monetary incentive
a-priori and an experimenter explained the reward system only after the par-
ticipants finished the non-optimization rounds with each of the two controllers.
The order of controllers was randomized and counterbalanced to avoid recency

effects.

In each design round, the participants were given 5 minutes to tune the
robot’s controller parameters. Participants specified the controller parameters
verbally to the experimenter, who activated the the Uls shown in Fig. 3.3/ (PV),
Fig. (M(J), and Fig. (MCE). Participants would see the UI screen from
their workspace position, as shown in Fig. This choice was made to save
participants the time to move back and forth between the workspace area and
the keyboard and mouse area of the UI computer. Participants could test their
specified parameters by verbally requesting the robot to hand over a vaccine
vial, and updating the parameters after observing the handover time for that
vaccine. They could do so as many times as they wanted within the 5-minute
design round. The participants’ verbal requests were relayed to the robot by the

experimenter, to avoid speech processing errors.

Each design round was followed by a test round in which the participants
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Figure 3.3: Graphical Interface for the PV controller
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Figure 3.4: Graphical Interface for the MC]J controller

had to perform 18 sequential handovers with the robot, which used the final
controller parameters from the design round. The robot autonomously handed
over the vials, one by one, in the following order: six green vaccines, six yel-
low vaccines, and six red vaccines. The participants had to receive the vials
and place them in a pre-defined packaging sequence shown in Fig. The
participants were asked to move to the next packaging station before receiving

the vaccine vial. This rule forced participants to perform handovers at different
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| The robot will try to reach in minimum possible time within the upper limit

Figure 3.5: Graphical Interface for the MCE controller

packaging stations, and the pre-defined packaging sequence ensured that the

three vaccine types were handed over at each of the three stations.

Station #

Figure 3.6: Sequence of vaccines to be placed at each packaging station

After finishing each of the non-optimization and optimization test rounds
with both controllers, participants reported their experience of working with
each controller. We used Laugwitz et al.’s [88] user experience questionnaire to
elicit the efficiency, perspicuity, and dependability ratings of each of the con-
trollers. In Study 1, we also collected responses to these measures of work-
load: mental demand, performance, effort, and frustration, using the NASA
TLX questionnaire, but in Study 2 we did not measure these variables (see: Sec-
tion[3.3.7). Additionally, at the end of the experiment participants were asked to

provide a written response to the prompt: “Please write a few sentences com-
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paring the two controllers based on your experience of designing and using

them in this experimental task”.

We recorded the duration of the test rounds, the robot’s and the human’s
idle time during the test rounds, and the number of handover failures in the
test rounds. In the first study, failures include handovers with timing constraint
violations, and—for the timing controller—also cases in which the controller
could not find a feasible solution. In the second study, we also counted in-

stances of vials falling from users” hand during the handover as failures (see:

Section [3.3.7).

Table 3.1: Summary of Quantitative Results of Study 1

Non-optimization Round Optimization Round
Variable MCJ] PV MCJ PV
Efficiency 4.72(1.05) 4.64(1.09) 4.73(0.99) 5.08(1.01)
Perspicuity 4.79(1.34) 4.82(1.42) 4.39(1.37) 4.83(1.45)
Dependability ~ 4.92(1.01) 4.97(1.24) 4.58(1.21) 5.22(1.00)
Overall UE 4.81(0.98) 4.81(1.16) 4.56(1.02) 5.04(1.01)
Failures 2.77(2.67) 1.87(1.83) 2.43(2.57) 1.43(1.48)
Task Duration 286.07(15.00) 250.00(6.48)  281.08(9.96)  245.52(5.25)
HIT 198.29(21.38)  163.71(20.32) 200.85(22.13) 168.88(17.25)
RIT 165.21(12.58)  142.56(7.70)  162.67(10.77)  138.08(5.77)

HIT: Human Idle Time, RIT: Robot Idle Time

3.3.7 Design Differences Between Study 1 and Study 2

The experiment design of both of our studies was similar except for the follow-

ing differences:.

* In Study 1, we asked participants to report their experience of “utiliz-

ing this controller for performing this task”. We realized that this ques-
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Table 3.2: Summary of Quantitative Results of Study 2

Non-optimization Round Optimization Round
Variable MCE PV MCE PV
Efficiency (P) 5.38(1.21)  4.53(1.17)  5.06(1.31)  4.65(1.37)
Efficiency (C) 5.45(1.15) 4.52(1.14) 5.23(1.37) 4.70(1.44)
Perspicuity (P)  5.45(1.37)  4.89(1.44)  5.06(1.97)  4.60(1.48)
Perspicuity (C)  5.95(1.08)  5.11(1.23)  545(1.72)  4.49(1.54)
Dependability (P)  5.56(1.25)  4.79(1.27)  5.08(1.58)  4.48(1.26)
Dependability (C)  5.77(1.11)  4.73(1.04)  5.42(1.31)  4.43(1.42)
Overall UE (P) 5.46(1.21) 4.74(1.19) 5.02(1.71) 4.57(1.31)
Overall UE(C)  5.72(1.01)  4.78(1.03)  5.42(1.30)  4.43(1.60)
Failures 1.93(3.93) 2.97(2.82) 1.63(3.22) 3.10(3.06)
Task Duration  268.25(28.25) 246.42(10.87) 259.63(12.08) 240.08(10.04)
HIT 178.28(34.96) 156.44(21.42) 180.80(19.51) 159.34(24.63)
RIT 166.40(34.36) 151.83(15.60) 159.81(17.52) 148.91(14.35)

P: Programming, C: Collaborating, HIT: Human Idle Time, RIT: Robot Idle Time

tion combines two different user experiences: one of specifying the con-
troller parameters and one of physically performing the handovers with
the robot. To measure these two variables separately, in Study 2, we asked
participants to report their experience of “programming the robot (setting
the parameters) with this controller”, and additionally, their experience of
“physically collaborating with the robot (handling the vaccines) with this

controller”.

¢ In Study 1, we collected responses to the NASA TLX questionnaire to mea-
sure user workload. We found that these scores were correlated with the
user experience (UE) scores. The Pearson’s correlation scores are provided
in Appendix|Al Therefore, in Study 2 we did not use the NASA TLX ques-

tionnaire.

¢ In Study 1, the feedback from the MC]J timing controller was “Couldn’t
reach your hand in time” and the experimenter verbally told participants

that they need to increase the reach time. In Study 2, we changed the feed-
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back from the MCE controller to a more comprehensible prompt: “I will
not be able to reach in the specified time limit”, and to maintain unifor-
mity across participants, the experimenter did not provide any additional

prompts.

In Study 1, we noticed some instances of vials falling from the participants’
hands during the handover, but we could not record these instances. In
Study 2, we decided to record these instances since such falls are a mode

of failure of the robot’s handover controller.

In the optimization test rounds of Study 1, the time limit for earning
the monetary rewards described in Section was: 279.19 seconds
(SD=3.96) for the MC]J controller and 245.16 seconds (SD=3.34) for the PV
controller. In Study 2, this time limit was: 260 seconds (5D=0.0) for the
MCE controller and 245 seconds (SD=0.0) for the PV controller, because
the MCE controller resulted in faster handovers, on average, as compared

to the MC]J controller.

3.3.8 Participants

31 participants (12 engineering, 19 non-engineering) participated in Study 1,

and a different set of 30 participants (2 engineering, 28 non-engineering) partic-

ipated in Study 2. We did not use the same participants in both studies to avoid

learning effects. In Study 1, there was an error in the data logging system for

one of the participants, and we do not include this participant in the analysis

of task duration and handover failures. Additionally, another participant did

not fill out one of the user experience questionnaires, and we do not include

this participant in the analysis of user experience. Thus we have n = 30 ob-
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servations for all analyses. Each study session took approximately 90 minutes,
and the participants were compensated with a minimum of $15, and additional
rewards based on performance in the optimization round. The average payout

was $18.42 for Study 1 and $19.57 for Study 2.

3.4 Results

3.4.1 Quantitative Results

Tables and show the summary of quantitative results of both studies,
where the mean and standard deviation of the dependent variables in the non-
optimization and optimization rounds are shown. To test the hypotheses H1-
H5, we conducted paired sample Student’s t-tests on the measured differences.
In case of significant deviations from normality, checked with the Shapiro-Wilk

Normality test, we used the Wilcoxon’s signed-rank test. The results of these

tests are shown in Tables

Table 3.3: Results of Paired Sample Tests for Hypotheses H1-H5 for the non-
optimization round of Study 1 (MCJ vs PV)

Hypothesis Variable Test Statistic p-Value Effect Size
Hla Efficiency S —0.256 0.4 —0.047
H1b Perspicuity S 0.065 0.526 0.012
Hilc Dependability S 0.170 0.567 0.031
H1 Overall UE S 0.0 0.5 0.000
H2 Failures S —1.451 0.921 —0.265
H3 Task Duration W 0.0 1.000 —1.000
H4 Human Idle Time W 2.0 1.000 —0.991
H5 Robot Idle Time S —11.187  1.000 —2.042

S: Student’s t-test, W: Wilcoxon's signed-rank test, (P): Programming, (C): Collaborating
*p < 0.05, " p < 0.005, " p < 0.001
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Table 3.4: Results of Paired Sample Tests for Hypotheses H1-H5 for the opti-
mization round of Study 1 (MCJ vs PV)

Hypothesis Variable Test Statistic p-Value Effect Size
Hla Efficiency S 1.696 0.950 0.310
H1b Perspicuity S 1.144 0.869 0.209
Hlc Dependability S 2.402 0.989 0.439

H1 Overall UE S 1.848 0.963 0.337

H2 Failures S —-1.912  0.967 —0.349
H3 Task Duration S —18.260  1.000 —3.334
H4 Human Idle Time S  —15.455  1.000 —2.822
H5 Robot Idle Time S —12.236 1.000 —2.234

S: Student’s t-test, W: Wilcoxon's signed-rank test, (P): Programming, (C): Collaborating
*p < 0.05,* p < 0.005, *** p < 0.001

Table 3.5: Results of Paired Sample Tests for Hypotheses H1-H5 for the non-
optimization round of Study 2 (MCE vs PV)

Hypothesis Variable Test Statistic p-Value Effect Size
Hla Efficiency (P) S —2.658 0.006 —0.485
Hla Efficiency (C) S —3.102 0.002** —0.566
H1b Perspicuity (P) S —1.556 0.065 —0.284
H1b Perspicuity (C) S —2.844 0.004* —0.519
Hlc Dependability (P) S —2.776 0.005* —0.507
Hlc Dependability (C) S -3.679 < 0.001* —0.672

H1 Overall UE (P) S —2.426 0.011* —0.443
H1 Overall UE (C) S —3.547 < 0.001*** —0.648
H2 Failures W 278.5 0.016* 0.474

H3 Task Duration W 13.0 1.000 —0.944
H4 Human Idle Time W 38.0 1.000 —0.837
H5 Robot Idle Time W 46.0 1.000 —0.789

S: Student’s t-test, W: Wilcoxon’s signed-rank test, (P): Programming, (C): Collaborating
*p < 0.05, " p < 0.005, " p < 0.001
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Table 3.6: Results of Paired Sample Tests for Hypotheses H1-H5 for the opti-
mization round of Study 2 (MCE vs PV)

Hypothesis Variable Test Statistic p-Value Effect Size
Hla Efficiency (P) S —1.307 0.101 —0.239
Hla Efficiency (C) S —1.859  0.037* —0.339
H1b Perspicuity (P) S —1.002  0.162 —0.183
H1b Perspicuity (C) S —3.245  0.001* —0.592
Hlc Dependability (P) S —1.635 0.056 —0.298
Hlc Dependability (C) S —3.452  0.001*** —0.630

H1 Overal UE(P) S  —1.197  0.120 ~0.219
H1 Overal UE(C) S —3.307 0.001*  —0.604
H2 Failures S 2.068 0.024* 0.378

H3 Task Duration 4 6.0 1.000 —0.974
H4 Human Idle Time S —6.291 1.000 —1.149
H5 Robot Idle Time S —3.053  0.998 —0.557

S: Student’s t-test, W: Wilcoxon’s signed-rank test, (P): Programming, (C): Collaborating
*p < 0.05,* p <0.005, *** p < 0.001

3.4.2 Qualitative Feedback

At the end of the study session, we had asked participants to provide quali-
tative feedback, with the prompt “Please write a few sentences comparing the
two controllers based on your experience of designing and using them in this
experimental task”. Two coders independently analyzed the comments to find
which controller each participant preferred in terms of efficiency, perspicuity,
dependability, and handover quality. The inter-coder reliability was 87.1% in
Study 1 and 84.2% in Study 2.

The majority of the participants who wrote comments related to perspicuity
preferred the perspicuity of the timing controllers over that of the baseline PV

controller: 18 out of 28 in Study 1 and 17 out of 26 in Study 2.

Study 1, P22: “The speed multiplier [PV] controller was a little more dif-

ficult to learn because I did not have a great idea of what the base speed
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was or what speed a number would produce until after practicing with the

controller.”

Study 2, P28: “Personally, I like the time [MCE] controller compared to
the second one [PV] because the multiplier [PV] is kind of confusing. Al-
though there is pattern and relation between multiplier and speed of the
robot reaching my hand, it takes me some time to think about what it means

and how it is related to the robot’s speed.”

Study 2, P04: “[PV] was much easier to use since it was more straight

forward and I only had to worry about one parameter instead of 2.”

The majority of the participants who wrote comments related to the depend-
ability of the controllers felt that the PV controller was more dependable than
the M(J timing controller (10 out of 12 participants), but the MCE timing con-

troller was more dependable than the PV controller (4 out of 5 participants).

Study 1, P26: “With the time controller [MCJ], I faced a problem of the
controller not being able to meet the set time which felt like it needed more

tuning of parameters than it seems on paper.”

Study 2, P09: “The time parameter [MCE] was better because I felt the
time could be more predictable rather than depending on the placement of

your hand.”

Study 2, P10: “With the time [MCE], I could select a concrete amount of
time and expect the robot arm not to move until that set amount of time had

passed.”
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Four participants commented on the efficiency of the MC]J timing controller
vs PV controller, and all of them preferred the latter, and five participants out of
the seven that commented on the efficiency of the MCE timing controller vs PV

controller preferred the latter.

Study 1, PO1: “Since the three stations were at different distances from the

robot, I felt that the multiplier [PV ] worked better.”

Study 2, P18: “But, the multiplier [PV] may be more efficient since you

can change the speeds to deliver the vials faster.”

3.5 Discussion

We developed handover controllers that allow users to specify a robot’s behav-
ior in terms of intuitive timing parameters and provide failure feedback. Our
hypothesis was that—compared to a baseline PV controller—the timing con-
trollers would result in a better user experience and lower failure rates, while

not negatively affecting the handover timing efficiency of the robot.

Our results suggest that “the devil is in the details.” Two instances of a
timing-with-feedback controller can result in very different, and even opposite,
user experience and task performance. The instances developed for this study
differ in terms of the motion strategies of the robot, in turn, encoded as objective

functions and constraints of the MPC problem.

Our findings indicate that the MCJ strategy, which we initially thought

would be preferred by users, results in a lower user experience compared to
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a PV controller, more prominently when the users have to optimize the con-
troller parameters for faster handovers, whereas the MCE strategy results in a
higher user experience compared to the baseline. One possible cause for this is
that the robot’s reach time when using the MCJ controller is more sensitive to
target locations due to a gradual starting motion. This leads to a higher number
of instances of infeasible solutions to the MPC problem for MCJ (mean: 2.03, SD:
1.86) than MCE (mean: 1.20, SD: 2.11). Another possible cause is that the MC]
controller produces slower robot motions than the MCE and PV controllers. Fi-
nally, the prompts of the controller parameters and the feedback could have also
affected the user experience of designing the controllers. The MCJ controller’s
UI had a more descriptive prompt about the controller parameter (“Maximum
time taken by the robot to reach the handover location”) while the MCE con-
troller had command-like prompts for the controller parameters (“Don’t move

until” and “Reach before”).

We found that the MCE controller resulted in lower vial falls from the human
hand during the handover than the PV controlle] This could be attributed to
the fact that the PV controller slows down the robot as it approaches the human
hand, and sometimes stops short of the human hand due to a steady state error.
Thus, users find it difficult to gauge exactly when the object will be released by
the gripper. In contrast, the MCE controller often overshoots the target position
and thus thrust the object into the human hand, which may be preferred by
users. In Study 2, P14 commented, for example: “I like how it got really close to

my hand and basically put the tubes into my hand.”

Both instances of our timing controller resulted in higher test-round task

duration, robot idle time, and human idle time compared to the baseline con-

MCE mean falls: 0.07, PV mean falls: 0.4, W = 105.5, p = 0.005, r = 0.758
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troller. One possible cause is that users were more conservative in setting the
parameters for the timing controller. For example, in the case of the MCE con-
troller even though the optimal stall time for the green vaccine was 0 seconds,
13 participants set a non-zero value in the optimization round. Second, there
is an inherent sub-optimality with both instances of the timing controller for
our setup shown in Fig. A reach time that is optimal for handovers near
packaging station 1 might be infeasible for handovers near packaging station 3
because of the longer travel distance from the storage rack. Thus, the user has
to select a higher reach time to have successful handovers at all the packaging
stations. Additionally, the MPC controller has a higher sample time increasing

its response time by approximately 0.2 seconds per handover.

One surprising result was that the participants rated the MCE controller to
be more efficient for physically collaborating with the robot, compared to the
PV controller, even though the MCE controller resulted in higher task duration
than the PV controller. Based on the qualitative feedback of some participants
this could be attributed to the faster robot motion produced by the MCE con-
troller. For example, in Study 2, P30 commented: “I also found it [PV] the most
annoying because it felt like it was moving so slowly. I actually like the second one
[MCE] better because it feels like you are going faster.”, and P28 commented: “I ac-
tually like the second one [MCE] better because it feels like you are going faster, I know

it’s not necessarily [so], but it feels that way.”

A few participants had more than 50% failures in the test rounds. In Study
1, one participant had 11 failures with the MCJ controller in the first test round.
In Study 2, three participants had more than 10 failures with PV, and four par-

ticipants had more than 10 failures with the MCE controller. In their qualitative
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teedback, some participants attributed these failures to their lack of experience
with robots. Study 2, P9: “I was a little slow at understanding how the concept ap-
plied to the programming. I am not familiar with robotics or programming them. Once

I got the idea, it made logical sense. But it took me a while to get there.”

3.6 Conclusion and Future Work

We hope that our timing-with-feedback controllers will be useful in scenarios
where end-users need to design a robot’s handover behavior. We investigated
one such task in this work, and our studies revealed the advantages and disad-
vantages of our proposed controllers vis-a-vis a baseline controller. Our work
can motivate further research toward the design of better user-defined con-
trollers for human-robot handovers. This includes investigating other motion
strategies and constraints, designing corrective feedback, and testing in real in-

dustrial settings.
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CHAPTER 4
SPECIFYING AND SYNTHESIZING HUMAN-ROBOT HANDOVERS

4.1 Introduction

We present a controller for human-robot handovers that is automatically syn-
thesized from high-level specifications in Signal Temporal Logic (STL). In con-
trast to existing controllers, this approach can provide formal guarantees on the
timing of each of the handover phases. Using synthesis also allows end-users
to specify and dynamically change the robot’s behaviors using high-level re-
quirements of goals and constraints rather than by tuning low-level controller
parameters. We illustrate the proposed approach by replicating the behavior
of existing handover strategies from the literature. We also identify specifica-
tion parameters that are likely to lead to successful handovers using a public

database of human-human handovers.

As described in Section the offline controllers of human-robot han-
dovers plan the robot’s motion before the start of a handover. These approaches
do not take into account the observed behavior of the human during a handover,
and thus, lack adaptability to the human’s behavior. The online controllers pro-
posed in the literature take into account the observed human motion. Though
these approaches enable the robot to adapt to the human’s motion, they require
tuning non-intuitive controller parameters (e.g., the weights of DMP terms [133]]

or the velocity-tracking gain[112]) to achieve a specific robot behavior. Also,

A substantial portion of this chapter is taken from [80] ©2019 IEEE. Reprinted, with per-
mission, from A. Kshirsagar, H. Kress-Gazit and G. Hoffman, “Specifying and Synthesizing
Human-Robot Handovers”, IEEE/RS] International Conference on Intelligent Systems and
Robots (IROS), Macau, 4-8 November 2019
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none of these provide timing guarantees on different stages of a handover. Such
timing guarantees may be crucial in productivity-oriented industrial tasks and
fast-paced life-critical scenarios like surgery. Finally, although several human-
inspired strategies have been proposed in the literature for human-robot han-
dovers, there is no unified framework to easily switch between those strategies.

Our proposed approach, shown in Fig. tries to address these limitations.

Human Robot Human
Motion Model
Interaction
Controller
World Model el
Specifications

Figure 4.1: Our approach to human-robot handovers uses the automatic synthe-
sis of a robot controller from formal specifications written in Signal Temporal
Logic. Users can change the robot’s behavior with high-level requirements of
goals and intuitive parameters such as the timing of different stages of han-
dovers. The controller is then synthesized online based on a given human-
motion prediction model and a world dynamics model.

We exemplify the possibility of automatically synthesizing handovers
by specifying the robot’s handover behavior using Signal Temporal Logic
(STL) [104] formulae. STL is well-suited to the handover domain as it enables
reasoning about timings and distances. Using STL, the user can change the
robot’s behavior by specifying intuitive parameters like the timing of different
phases of handovers and safety constraints. We present specification templates
both for human-to-robot and robot-to-human handovers and illustrate the flex-
ibility of our approach by reproducing existing human-robot handover strate-

gies found in the literature. We then use the same specifications in conjunction
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with a human-human handover dataset to identify parameters that can lead to

successful human-robot handovers.

Automatic synthesis of robot controllers outside of HRI has been gaining
interest in the past several years [78] and has been demonstrated on a variety
of platforms including mobile robots, UAVs, autonomous cars, modular robots,
mobile manipulators, swarm robots, and humanoids. Still, very little work has
been done regarding synthesis for HRI. In the area of formal methods, Araiza-
[llan et al. [5] and Webster et al. [176] applied probabilistic model-checking in
a human-robot handover task, verifying a controller with respect to safety and
liveness specifications. But these works consider a given controller and do not
deal with the synthesis of one. Li et al. [97] presented a formalism for human-in-
the-loop control synthesis and synthesized a semi-autonomous controller from
temporal logic specifications, but the HRI aspects were limited to human in-
tervention and correction of the robot’s operation, and not the actual handover
interaction. To the best of our knowledge, there is no prior work on synthesis

for human-robot handovers. We try to address this gap in this work.

4.2 Signal Temporal Logic for Robot Control

Automatic synthesis of robot control [78] has been demonstrated using several
formalisms, including discrete logic such as Linear Temporal Logic (LTL), prob-
abilistic logic such as Probabilistic Computation Tree Logic (PCTL), and met-
ric logic such as Signal Temporal Logic (STL). We choose STL for human-robot
handovers, as it allows specifications that include distances, timing, and object

states.
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4.21 Signal Temporal Logic

STL formulae are composed of predicates 77 : R" — B over continuous signals.
The truth value of a predicate 77 is determined by the sign of a function 7 :
R™ — R of an underlying signal s. The predicates can be combined with Boolean
operators [“NOT” (—), “AND” (A), “OR” (V)], and temporal operators [“Until”
(U), “Always” (), and “Eventually” (¢)]. STL formulae are defined recursively

according to the following grammar:

eu=a" 2|1 Apa | o1V | Oy | ©1llian 2 | Oape

where a,b € R>(. The operators (I (“Always”), ¢ (“Eventually”) and ¢/ (“Until”)

can also be unbounded.

The satisfaction of an STL formula ¢ with respect to the signal s at time ¢ is

defined inductively as follows:

(s,t) 7" <= ~(s(t)) >0
(8,1) | -7 = =((s,t) = 7)
(8,t) F o1 Npa = (s,8) =1 A (s,1) = @2
(8,t) F o1 Vs <= (s,8) F @1V (s,t) = @2
(5,8) E Oy <= V' elt+a,t+0],(s,t)) Fo
(s,0) | oilla e <= 3t €[t +a,t+b] st (s,t) = oo

AV € [t, 1], (s, ") E o1
(5,8) E Qupp <= H eft+a,t+b]st (s,t') ¢
A signal s = s(5;5... satisfies ¢, denoted by s = ¢, if (s,0) = ¢. Informally,
s = Oy if ¢ holds at each time between a and b. s = o1Ujq 2 if 2 holds
at some time ¢ between a and b, and ¢, holds at each time between a and c.

s = Qlay ¢ if ¢ holds at some time between a and b.
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4.2.2 Receding Horizon Control Synthesis from STL

For controller synthesis, STL specifications can be automatically transformed
into mixed integer linear programs (MILP) and solved either globally for a se-
quence of control actions or iteratively in a receding horizon manner [139] [140].
In this work, we use the receding horizon control (RHC) synthesis algorithm
presented by Raman et al. [139]: Given a system of the form z;1 = f(x, ), ini-
tial state z(, STL formula ¢, cost function .J and finite horizon H, the following

optimization problem is solved at each time-step ¢:

argmin ., J(x(z, u"), u?)
4.1)

s.t. x(zg,up) E ¢

where u' = uf, ut ub..ub;_; is the horizon-H control input sequence com-
puted at each time step and x(z;, u""') = x4, 7411, T419...0,1 1 is the sequence
of system states over the horizon H. Though the control input is computed
over the horizon H, only the first control is applied at each time-step and
the horizon is calculated again. Thus in Eq. uy = up,up,u, ... is the ap-
plied control sequence consisting of only the first control inputs of u”"* with
x(xg,ug) = o, 21, T2... being the sequence of system states as a result of the

input uy.

4.3 Formulation of Handovers in Signal Temporal Logic (STL)
To specify human-robot handovers in STL, we first define the following vari-
ables. Bold letters denote vectors.

Pose:
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* pi = [T, Yi, zi] and di = [Guis Qy.is G205 Gu,i] TEPTESent the position and orien-
tation vectors in 3D space, jointly called ‘pose’. Subscripti € {r, h,0,1,d,n}
refers to: r = robot, h = human, o = object, [ = handover location, d = object

drop-off destination, 7 = robot home pose.

® (s is the offset between the robot end-effector’s orientation and the human

hand’s orientation, when they both hold the object.

* ¢, and ¢, are the permitted tolerances (errors) in the robot end-effector’s

position and orientation from any desired position and orientation.

Gripper and Hand:

* g, and g, € [0, 1] are the robot gripper and human hand “openness” (0 for

fully closed, 1 for fully open).
* g. € [0,1] is the grip-width of the object.

* ¢, is the permitted tolerance (error) between a gripper/hand openness

from a desired level of openness.

Force Sensing:

* «, € [0, 1] is the proportion of the weight (or the “load-share”) of the object

supported by the robot.

* Jy, 0, are thresholds on the load share specifying holding and releasing

states.

Other:

e [, is the radius of a “handover zone” centered around the robot’s base.
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* cisaboolean variable used to specify that the handover has started.

* 04, 0, 0, 04 are discrete object states (defined below).

Assumptions: We represent all the poses in the frame attached to the base of
the robot, as shown in Fig. We assume that the human hand always remains
in the dextrous workspace of the robot. We consider that the human is ready for
the handover if the human hand is within a region of radius [, centered at the
robot’s base, which we call the handover zone. For human-to-robot handovers,
we assume that the human hand contains the object at the start of the handover,
and also assume that the object’s drop-off destination location is in the dextrous
workspace of the robot. For robot-to-human handovers, we assume that the
object is initially in the dextrous workspace of the robot. For simplicity, we
consider that there is only one object in the workspace, but the formulation can

be easily extended to multiple objects.

4.3.1 System Representation

We model the robot’s end-effector’s motion as a linear system with its pose
and gripper openness making up the system state x. The end-effector veloc-
ity and the gripper’s opening velocity are the control input u, constrained by

Umin S u S Umax-

T
X = [ﬁr7 (it‘a gr} =u (42)

We choose velocity control as it enables control over the timing of the pose
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Robot End-Effector

Human-Hand

Robot Base Frame

Figure 4.2: Human-Robot object handover reference frames. All poses are ex-
pressed in the frame attached to the base of the robot.

trajectory. Also, velocity control is the most suitable choice for reactive trajectory
modification and online motion planning [184]. We represent the world state w
as the pose of the human’s hand, the human’s hand’s openness, and the pose of

the object.

T
W= [pha Qh; 9h, Po, q0:| (43)

To simplify the specification formulae, we create sets of the robot, hu-
man, and object states and represent them using the discrete variable o €
{o0s,0r,0n,04}, defined in Table If the robot’s gripper is equipped with a
force sensor, the load-share estimate «, is used to determine o, similar to Med-
ina et al. [110]. Otherwise, we use the human’s hand state g, and the robot

end-effector state g,.
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Table 4.1: Discrete object states defined for robots without and with a gripper

force sensor.
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In the following sections, we deal with human-to-robot handovers and

robot-to-human handovers separately.

4.3.2 Specifications for Human-to-Robot Handovers

From a receiver’s perspective, a handover consists of three phases: a reach
phase in which the receiver moves to the handover location, a transfer phase
in which the receiver grasps the object and the giver releases the object, and a
retreat phase in which the receiver moves to the object’s drop-off destination lo-
cation. When the robot is the receiver, we specify its behavior in terms of timing

constraints on these three phases (Table 42| top).

® Reach: The robot should reach the handover location [py, q;] within ¢; sec-

onds after the handover signal e.

* Transfer: The robot should grasp the object within ¢, seconds after it

reaches the object’s location.

* Retreat: The robot should retreat to the object’s drop-off location [p4, qq]
within 3 seconds after it has the object and release the object in ¢, seconds

after reaching the object’s drop-off location.

4.3.3 Specifications for Robot-to-Human Handovers

From a giver’s perspective, a handover consists of four phases: a pick-up phase
in which the giver moves to the object’s location and grasps the object, a reach

phase in which the giver moves the object to the handover location, a transfer
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phase in which the giver releases the object and the receiver grasps the object,
and a retreat phase in which the giver moves back to its original position. When
the robot is the giver, we specify its behavior in terms of timing constraints on

these four phases (Table 4.2|bottom).

¢ Pick-up: The robot should reach the object’s location within ¢; seconds and

grasp the object within ¢s seconds after reaching the object’s location.

e Reach: The robot should take the object to the handover location [p;, qi

within ¢7 seconds after the handover signal e.

¢ Transfer: The robot should release the object within ¢ seconds after the

object is shared by both.

* Retreat: The robot should retreat to a home position [p,, q,] within ¢y sec-

onds after the human has received the object.

4.3.4 Specifying Different Handover Strategies

To illustrate the flexibility of our approach, we list specifications for four differ-
ent handover strategies which are found in the literature. These differ only in
the way the reach phase is specified. For each of these strategies, the specifica-

tion in Table [4.3| replaces the reach phase specification in Table

* Proactive, Predetermined: The robot should reach a predefined or of-
fline computed handover location |p., q.| without waiting for the human’s
hand to enter the handover zone. This behavior is similar to the robot’s be-

havior presented by several researchers (see “Offline:Pre-programmed or
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Table 4.2: STL Specifications for Human-Robot Handovers
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Hand-coded Controllers” in Section 2.5.2 such as Moon et al. [115] and

the “proactive” strategy presented by Huang et al. [63].

Proactive, Towards Human: The robot should reach the human’s hand
without waiting for the human’s hand to enter the handover zone. This

behavior is similar to the controller of Medina et al. [110].

Reactive, Predetermined: The robot should reach a predefined or offline
computed handover location [p., q.], only when the human hand is in
the handover zone. This is similar to the “reactive” strategy proposed by

Huang et al. [63].

Reactive, Towards Human: The robot should reach the human’s hand,
only when the human’s hand is in the handover zone. This behavior
is similar to the behaviors presented by several researchers (see “Veloc-
ity controllers towards human hand” in Section such as Micelli et
al. [112].

4.4 Evaluation

In this section, we present simulated runs to demonstrate the different robot

behaviors synthesized from the specifications described in Section We also

show how different choices of reach-time parameters affect the expected suc-

cess rate of the handover, as evaluated on a public dataset of human-human

handovers. We only present the simulations of the reach phase since the other

phases have the same specifications in all the presented strategies. Also, we only

consider the position trajectory of the human hand and synthesize the position

85



Table 4.3: STL Specifications for Reach-Phase Strategies
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trajectory of the robot, since the orientation trajectory of the robot depends on

the offset q; specific to the object being handed over.

4.4.1 Implementation

We use the MATLAB “BluSTL" toolbox [138] to synthesize controllers from the
system dynamics and specifications. This toolbox implements the RHC synthe-
sis algorithm described in Section Since this toolbox accepts only linear
and affine predicates, we use the /; norm in the specifications. For the objective

function, J in Eq. 4.1} we use

H
J(x(a u) u) = lug (44)
k=0
to suggest that the robot move with minimum mean velocity.

The receding horizon control synthesis from the STL specifications depends
on the predicted behavior of the environment w over the horizon H. Specifi-
cally, the prediction horizon H has to be greater than the maximum ¢; value in
the specifications. At each time-step, we predict the motion of the human by
a Linear Dynamical System (LDS) p, = Apy. Similar to the approach used by
Medina et al. [110], we use the pose data of the human for a pre-defined time in-
terval before the current time-step and estimate the matrix A using least squares

approximation. Then the predicted motion of the human is given by:
Pu(to +t) = pu(to) + (t6;)Apn(to) VYt € [0, H] (4.5)

where H is the prediction horizon and ¢, is the sampling time. We update this

estimate at each time-step using the position of the human hand and generate
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the control input for the next time-step. If no feasible control input is found, the

robot stops.

4.4.2 Simulations

Fig.4.3|shows the simulated robot end-effector’s trajectories for each of the four
reach-phase strategies for the same human hand motion. The values of the STL
parameters are: t; (reach time) = 3s, ¢, = 0.01m, Umin = [—1.0, —1.0, —1.0Jm/s,
Umax = [1.0,1.0,1.0lm/s, é; (control input sampling interval) = 0.2s, H = 15
time-steps. For readability, we only show the z axis projection. Each strategy
results in a different robot trajectory. In the “Predetermined” strategies (Fig.
top row), the robot goes to a fixed handover location regardless of the human's
motion and thus may require adjustment on the human’s part to reach the han-
dover location. In the “Towards Human” strategies (Fig. bottom row), the
robot moves to the human hand’s location. In the “Proactive” strategies (Fig.
left column), the robot starts to move towards the handover location even if the
human hand is not in the handover zone, while in “Reactive” strategies (Fig.
right column) the robot starts to move towards the handover location only when
the human hand is in the handover zone. These strategies result in different val-
ues for human and robot idle times, which are indicators of perceived human-

robot fluency [62].

In addition to specifying overall strategies, the STL formulation allows users
to specify high-level timing constraints for the handover, resulting in differ-
ent controllers. To illustrate, Fig. shows simulated robot trajectories for

different values of ¢;. The values of the other parameters are: ¢, = 0.01m,
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Figure 4.3: Simulation runs of different handover strategies. “Proactive” strate-
gies (left column) may result in shorter human idle time but longer robot idle
time, while “Reactive” strategies (right column) may result in shorter robot idle
time but longer human idle time. A predetermined handover location may
require adjustment on the human’s part (top row), while the human hand as
the handover location (bottom row) does not require any adjustment on the
human’s part. However, this may result in robot trajectories with overshoot
(bottom-left) or the robot initially moving away from the human (bottom-right),
due to the prediction of the human-motion model.
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Figure 4.4: Representative simulations of different reach-time values (reactive,
towards human strategy). A timing constraint of ¢; = 1s is infeasible given the
safety cap on the robot’s velocity. Increasing the constraint to ¢; = 2s allows
the robot end-effector’s trajectory to converge to the human hand’s trajectory
within the specified time limit. Increasing the reach time constraint from ¢; = 2s
to t; = 3s increases the time taken by the robot end-effector’s trajectory to con-
verge to the human hand’s trajectory and thus increases human idle time. This
increase is less than 1s because the timing parameter is only an upper bound.

Umin = [—1.0, —1.0, —=1.0]m/s, umax = [1.0,1.0,1.0lm/s, §; = 0.2s, H = 15 time-
steps. In this example, a specification of ¢; = 1s (reaching the handover location
within one second) results in the controller being unable to find a control input,

causing the robot to stop. For ¢; = 2s and ¢; = 3s the robot reaches the handover

location within the specified time limit, with different human idle times.
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4.4.3 Inferring Timing Parameters from a Handover Database

In addition to the possibility to synthesize a single controller for a given specifi-
cation, our approach provides an additional benefit: the ability to estimate con-
straints on the high-level behavior of the robot under different circumstances.
We illustrate this here by finding feasible bounds for ¢; based on a public
database of human-human handovers [25]. This database of 1000 recordings
was collected from 18 volunteers in 76 test configurations with different vol-
unteers’ starting positions, roles, objects to pass, and motion strategies. In our
evaluation, we only use the trajectories for “uncontrolled” (the experimenter is
not one of the actors) and “no-approach” (the volunteers are already standing
close to each other) configurations. This results in a dataset of 72 giving motions

and 72 receiving motions.

Each trajectory recording consists of 6-axis inertial data from the smart-
watches on the wrists of both participants, the upper-body models of both par-
ticipants with 20 motion capture markers, and the 15-joint skeleton model of
one participant with an RGB-D camera. The sampling rate of the sensors is
7 Hz. Due to the drift errors associated with IMU measurements and loss of
motion-tracking when the participants” hands overlap, we find that these two
sensor data are not useful for getting the trajectory of the human hand. There-
fore, we only use the wrist joint tracking data from the RGB-D camera. Since we
only simulate the reach phase, we first segment each trajectory into reach, trans-
fer, and retreat phases, as shown in Fig. The reach phase begins at the time
instant after which the distance from the starting position becomes greater than
dy X dpnee. The reach phase ends (and the transfer phase begins) when the speed

drops below v; X y,4,. The transfer phase ends (and the retreat phase begins)

91



when the speed goes below —v; X ¥;,,4,. The retreat phase ends when the distance
from the starting position becomes less than d; x d,,,,. We obtain the parameters
d; and v; through a parameter sweep over the range [0, 0.01, 0.02...0.5]. For each
combination of d; and v; in this range, we calculate the total number of han-
dover trajectories from the database that can be split into valid reach, transfer,
and retreat phases. A phase is valid if its end is detected before the end of the
trajectory and if its duration is non-zero. We find that d; = 0.41 and v; = 0.43
result in the maximum number of such valid phases and hence use these values

for splitting the trajectories.

2 T
fs‘x —Distance (m)
......... Speed (m/s)

Time (s)
Figure 4.5: Distance from the starting position and speed of the human hand
during a handover. Speed is positive if the hand is moving away from the start-
ing position and is negative if the hand is moving towards the starting position.
The trajectory is split into Reach, Transfer, and Retreat phases.

Table shows the percentage of the human giving motions from the
database for which the controller finds a feasible solution for a given reach-time
value and a maximum velocity control input t,,,,. The values of the remaining
STL parameters are: ¢, = 0.0lm, 6, = 0.2s, H = 20 time-steps. An end-user

could use results like these to estimate the timing, and thus the productivity, of

a handover system given a safety cap on the robot’s velocity.
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Table 4.4: Handover success rate for different reach-times.
Umaz(m/s)  t1(s) Successful Handovers

1s 14.3%
1 2s 91.4%
3s 100%

2s 2.9%
0.5 3s 82.9%
4s 97.1%

4.4.4 Implementation on a Real Robot

We attempted to implement our proposed STL controllers on two robot systems:
Kinova Jaco-2 and Franka-Emika Panda. Fig.|4.6{shows the two setups. We used
the OptiTrack motion tracking system to monitor the movements of the human
hand, the object, and the robot end-effector. We used the BIuSTL [138] toolbox
in MATLAB to synthesize robot controllers from the STL specifications for the
reach phase of a handover. The specifications only considered the position tra-
jectory of the robot and the human, and the orientation of the robot was kept
constant throughout the handover. The opening and closing of the robot’s grip-
per, for robot-to-human and human-to-robot handovers respectively, and the
retreat motion of the robot were commanded by another controller. The grip-
per’s actions were triggered based on a distance threshold from the human’s
hand. The robot, the OptiTrack system, and the MILP solver in MATLAB were
connected in a Robot Operating System (ROS) framework. We leveraged the
distributed computing capabilities of ROS and used three separate computers

to run these three components.

We used the kinova_rog!| package to command the Kinova Jaco-2 robot. The

robot end-effector’s Cartesian velocity commands, obtained from BIuSTL, were

Thttps://github.com/Kinovarobotics/kinova-ros
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Figure 4.6: Setup for testing STL controllers for human-robot handovers with (a)
Kinova Jaco-2 collaborative robot, (b) Franka-Emika Panda collaborative robot

sent to the robot through the “/in/cartesian_velocity” topic. We found that the
MILP solver in MATLAB required high computation times (approximately 0.5s
for a prediction horizon of 16 time-steps and 3 control inputs), which severely
limited the looprate of the controller. Also, the Kinova Jaco-2 robot’s maximum
Cartesian speed is 0.2m/s, which limited the reaching range of the robot in the
prediction horizon. Therefore, we switched to a faster robot, the Franka-Emika

Panda, which has a maximum Cartesian speed of 2m/s.

We used the fmnka,roﬁ package to command the Franka robot. The robot
end-effector’s Cartesian velocity commands, obtained from BluSTL, were sent
to the robot through the “franka_hw::FrankaVelocityCartesianInterface” interface.
Again, the looprate of the controller was limited by the high computation times
of the MILP solver. Further, though the maximum Cartesian speed of the Franka
robot is 2m/s, its joint/Cartesian velocity, acceleration and jerk limitﬂ reduced

the reaching range of the robot in the prediction horizon.

Future work can explore other computationally efficient techniques for STL

controller synthesis, for example, Control Barrier Functions [98].

https://github.com/frankaemika/franka_ros
Shttps://frankaemika.github.io/docs/control_parameters.html
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CHAPTER 5
EVALUATING GUIDED-POLICY SEARCH FOR HUMAN-ROBOT
HANDOVERS

5.1 Introduction

We develop and evaluate a robot controller that uses Guided Policy Search
(GPS) to perform reaching motions for object handovers. GPS [93}94] 05] is a
reinforcement learning (RL) algorithm that has shown promising success in sev-
eral autonomous tasks [91} 96, 92]. Some variants of GPS, like the one we use
in this work [92], do not require prior knowledge of the robot or environment

dynamics.

While GPS has been demonstrated on several autonomous manipulation
and navigation tasks, it has not been tested in a physical human-robot collabo-
rative task such as a handover. Examples of successfully learned manipulation
tasks with GPS include stacking small blocks, assembling toys, inserting rings
on wooden pegs, screwing bottle caps, inserting shapes into sorting cubes, and
opening doors [91), 96, 92]. Common to all of these GPS applications are fixed
targets, small variations in the test locations, and fixed robot dynamics. The
task of object handovers has important characteristics that deviate from previ-
ous work: First, it requires a robot to plan its motion towards a moving target,
i.e., the human’s hand. Second, given the unpredictability of human behavior,
the training and test target trajectories could be very different. Finally, due to

different objects that are handed over, the robot dynamics are not fixed.

A substantial portion of this chapter is taken from [79] Reprinted, with permission, from
A. Kshirsagar, G. Hoffman and A. Biess. “Evaluating Guided Policy Search for Human-Robot
Handovers” IEEE Robotics and Automation Letters, 2021 (open access)
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First, we evaluate GPS for handovers in simulation, and tackle previously
unanswered questions such as: How does GPS perform if the training and test
conditions are spatially far apart? How does GPS perform when reaching for
an unpredictable moving target? How does GPS perform in the case of changes
in the robot’s end-effector mass? To do so, we formulate the reach phase of
a handover as an RL problem and investigate the performance of GPS for the
scenarios listed above. We find that the global policy learned with GPS does
not perform well for target test locations spatially too distant from the target
training locations but that this can be addressed with the addition of local con-
trollers which are trained over target locations in the high error regions. In that
case, the learned global policy can also handle moving targets with comparable
errors, albeit with highly inefficient trajectories. Training on moving targets im-
proves the trajectories but results in higher worst-case errors. Finally, we find
that a learned global policy adapts well to changes in robot dynamics due to
changes in the robot’s end-effector mass. In an exploratory evaluation of dif-
ferent state representations, we find that a low-dimensional state representation

may be more suitable for GPS-trained handover controllers.

Second, we try to replicate the findings from the simulation on a physical
collaborative robot. Our investigations provide new insights on GPS when it
is used on a physical robot platform. First, we find that a policy learned in
simulation does not transfer readily to the physical robot due to differences in
model parameters and existing safety constraints on the real robot. Second, to
successfully train a GPS model, the robot’s workspace needs to be severely re-
duced, owing to the joint-space limitations of the physical robot. Third, a policy
trained with moving targets results in large worst-case errors even in regions

spatially close to the training target locations. Our findings motivate further
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research towards utilizing GPS in human-robot interaction settings, especially

where safety constraints are imposed.

Note on contributions

The implementation and evaluation of GPS on a physical collaborative robot
were carried out in collaboration with Tair Faibish (Master of Science, Depart-
ment of Industrial Engineering and Management, Ben-Gurion University of the
Negev, Israel). Both collaborators had an equal contribution. The implemen-

tation and evaluation is presented in detail in [45], and an abridged version is

included in Sections[5.5]and 5.6

5.2 Existing Evaluations of Guided Policy Search Methods

GPS was initially proposed by Levine et al. [93] 94, 95], and since then re-
searchers have proposed several variations of the GPS algorithm [39]. Levine
and Koltun [93] first proposed a GPS algorithm consisting of iterative lin-
ear quadratic regulators (iLQR) to generate locally optimal controllers, which
guided the supervised learning of policies with a large number of parameters.
They initialized the trajectories from demonstrations and used importance sam-
pling to incorporate new samples from the optimized trajectories at each gra-
dient step. They demonstrated their method by learning simulated locomo-
tion tasks such as planar swimming, hopping, walking, and running. They
improved this method by replacing importance sampling with a variational
decomposition of a maximum likelihood objective [94] or a policy agreement

constraint [95]. All of these GPS variations required known dynamics of the
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system. Montgomery and Levine [114] proposed a variant of GPS called “Mir-
ror Descent GPS” which used the constrained GPS formulation but instead of
constraining the local policies against the previous local policies, this method
constrained it directly against the global policy and used the true cost instead
of the surrogate cost. This method achieved similar or better results than previ-
ous GPS algorithms on simulated peg insertion and obstacle avoidance tasks.
For optimizing trajectories of systems with unknown dynamics, Levine and
Abbeel [91] extended the constrained GPS algorithm of Levine and Koltun [95]
with iterative refitting of locally linear dynamics models. They showed that this
method requires fewer samples than model-free methods and does not need
to learn global models, which are difficult to learn for complex systems. They
evaluated their method on simulated robotic manipulation tasks such as peg in-
sertion, and locomotion tasks such as swimming and walking. Levine et al. [96]
extended the evaluation of the algorithm through a variety of experiments on
a real robotic platform for tasks such as stacking lego blocks, assembling toys,
inserting a shoe tree, inserting rings on wooden pegs, and screwing bottle caps.
Building upon their prior work, they improved the GPS algorithm by adding
an adaptive scheme to select step size and number of samples, along with a

method of augmenting policy training with synthetic samples.

Levine et al. [92] proposed an end-to-end approach to learn policies that
map raw image observations directly to robot joint torques. They used the
constrained GPS algorithm and formulated it as an instance of the Bregman-
Alternating Direction Method of Multipliers (BADMM). They tested this
method on tasks that require close coordination between vision and control
such as inserting shapes into a sorting cube, screwing a bottle cap, placing a

hanger on a bar, and inserting a hammer underneath a nail. Zhang et al. [185]
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augmented the original GPS algorithm with a model predictive control (MPC)
scheme to generate training data without catastrophic failures. They used an
instrumented setup during the training phase to get full state observations and
trained a deep neural network policy with the guiding samples generated by
MPC. During the testing phase, the policy could generate control inputs from
partial observations of the system. They showed that this algorithm was com-
parable to the original GPS algorithm in the absence of model errors and out-
performed the GPS algorithm when model errors were introduced. Chebotar
et al. [32] augmented GPS with a model-free local optimizer based on path in-
tegral (PI) stochastic optimal control, instead of iLQR, to generate local con-
trollers. Also, unlike the GPS algorithms of Levine and Koltun, which used the
local controllers to generate training data, Chebotar et al. generated training
samples by running the global policy on new sets of task instances in each itera-
tion. They initialized local policies with kinesthetic teaching and initialized the
global policy by performing several iterations of standard GPS with local pol-
icy sampling using PI. This method performed better than iLQR-based GPS on

tasks with intermittent and variable contacts and discontinuous cost functions.

While researchers have tested GPS algorithms on a variety of locomotion
and autonomous manipulation tasks, to the best of our knowledge, no work
has evaluated GPS for tasks with large variations in target locations, moving
targets, and changes in robot dynamics, as are typical in HRI scenarios such as
handovers. Also, none of the prior works on GPS have evaluated the sensitivity
of GPS to the system’s state-space representation. We seek to address this gap in
this work by evaluating a robot controller that uses GPS for the reach phase of
human-robot object handovers. A large body of work has studied transfer learn-

ing [127] and domain adaptation [174] where the training and testing conditions
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belong to different tasks/distributions. However, in our work, the training and
testing conditions belong to the same task and are drawn from the same distri-
bution. Therefore, our problem statement is different from transfer learning or

domain adaptation.

5.2.1 Overview of the Guided Policy Search Algorithm

The goal of policy search algorithms is to find a policy my(u|x;) that minimizes
the expected cost E, [ZtT:l l(x¢,u;)] of executing a task. Here ¢ denotes the
policy parameters, for example weights of a neural network, u, is the control
input at time ¢, x; is the state of the system at time ¢, and I(x;, u;) is the cost
associated with the task at time ¢. Directly solving this minimization problem
through reinforcement learning requires large amounts of training data and is
susceptible to local minima. Guided policy search algorithms overcome these
issues through the use of guiding distributions or “local” controllers p;(u;|x;) to
train the “global” policy my(u;|x;) through supervised learning. The local con-
trollers can be trained via trajectory optimization methods such as iLQR. Thus
GPS poses the expected cost minimization problem as a constrained problem
given by

T

min EP[Z l(xe,ur)] st plugfxy) = mo(wlxe) Ve, (5.1)

t=1

where p(uw;|x;) is a mixture of guiding distributions p;(u|x;). The expec-
tation is taken with respect to p(7) = p(x) [[;—; P(Xr41|xs, uy)p(uy|x,), where
7 = {x1,Uy,...,Xp, ur} is a trajectory and p(x;11|x:, u;) is the dynamics model
of the system. As described in Section some variants of GPS algorithms

require known dynamics models while others iteratively learn locally linear dy-
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namics models from the training data.

In this work, we use the Bregman-Alternating Direction Method of Multi-
pliers (BADMM) GPS algorithm proposed by Levine et al. [92] which does not
require prior knowledge of the robot dynamics. In this algorithm, the local con-
trollers p;(u;|x;) and the dynamics p;(xi41|x:, we), Vi € [1,2,..., N| where N is
the number of local controllers, are represented with time-varying Linear Gaus-

sians:

pi(wlxy) = N(Kmxt,i + k4, Cyy), 5.2)

Pi(Xe1]Xe, ) = N (feriXe + furiWe + feri, Fei). (5.3)

The linear Gaussian controllers and dynamics can be efficiently learned with
a small number of samples. A different set of controller and dynamics parame-
ters are fitted for each training target trajectory (in our case: the human'’s reach-
ing motion). But a single global policy is supervised by all of the local con-

trollers, making it generalizable to different test target trajectories.

Levine et al. [92] suggest modifying the constraint in Eq.[5.1]by multiplying

with p(x;) and applying it to expected action, to make the constraint tractable:

T
min EP[Z l<Xt7 ut)] s.t. E’P(Xtyllt)[ut} = EP(Xt)WG(Ut\Xt)[ut] vt. (54)
t=1

p,0

The GPS algorithm alternates between generating optimal trajectories for
each local controller with iLQR and training a global policy supervised by the
local controllers. The global policy is also used to improve the local controllers,
such that the local controllers stay close to the global policy. GPS thus alternates

minimization of # and p as follows:

T
0 argm@inz Ep(xt)ﬂ'a(ut\xt)[u?AHt] + U Ep(x) [Drer (p(e|x4) || o (e[ %)), (5.5)

t=1
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T
p < arg mpin Z By un [U(x¢, 1) — utT)\ut] + Ve By [Dic (o (e xe) [ [p(ue|x) )],

= (5.6)

Aut = At + V(B (uelxe) (W] = Epier)pluelxe) [We]), (5.7)

where )\, is the Lagrange multiplier on the expected action at time ¢, v, is
the weight of the Kullback-Leibler divergence term that serves to keep p(u;|x;)

close to my(u|x;). For a detailed description of the GPS algorithm, see [92].

5.3 Policy Search Formulation of Handovers

We formalize the reach phase of a handover task as a reinforcement learning
problem. To do so, we specify the state/action space, as well as a cost/reward
function in the form of a differentiable function over the system states and con-

trol inputs.

5.3.1 System State Representation

Any reinforcement learning method is sensitive to its state representation, and
in this work, we explored three alternatives for the system state x;. The first one
is the FULL state, which might be available in a laboratory setup supported by
a motion tracking system. In this representation, the state consists of the robot
joint angles 6,, the robot joint velocities QT, the human arm joint angles 6, the
human arm joint velocities 6, the positions and velocities of three points on the

object (p,, p,), the human hand (p;, p,) and the robot gripper (p,, p,-), and the
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robot gripper’s width g, € [0, gopen] (0 for fully closed, gpen for fully open). The
positions are measured in an inertial frame fixed to the base of the robot. A state

is thus given by

Xt = [97”7 97‘7 9h7 éh? Po; Ph, Pr, poa ph7 pr‘7 gr]t~ (58)

As the human’s joint angles are difficult to measure for a robot outside a
laboratory, we also explore a REDUCED state representation, which excludes the

human arm joint angles and joint velocities:

Xt = [97“79T7p07phaphpoap]wp?“?g?“]t' (59)

Given the possible large variation in human position, we also explore a third
option, which includes the human hand and the object poses in the robot end-
effector frame instead of an inertial frame fixed to the base of the robot. This
RELATIVE representation corresponds to the configuration in which a camera

is attached to the robot end-effector:

X; = [0, 0, DLy Py Pl Py G- (5.10)

In all of the three alternatives, the robot’s control input u; = [r, f,]; consists
of the robot joint torques 7 and the force applied by the gripper’s actuator f,,

constrained by Upmin < 1 < Upax.

We use the REDUCED state representation in the majority of the results below.
We conclude with an exploratory comparison of the three state representations.
We use torques as control inputs instead of velocities or positions to take into
account the dynamics of the robot. This eliminates the need to tune low-level

position/velocity controllers.
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5.3.2 Cost Function

In the reach phase of handovers, the robot should move its gripper towards the

human hand. We represent this behavior with a cost function given by

Creach = Hpr - th2 + ln(Hpr - th2 + areach)~ (511)

The first term of this cost function penalizes robot positions far away from
the human hand, while the second term encourages precise placement due to
its concave shape, as described in [96]. Thus this cost function encourages the
robot to reach toward the human hand quickly and precisely. The parameter
Qreach, determines the penalty in the vicinity of the target. Similar to [96], we set

Qreach = le — 5 in the evaluations described in the next section.

5.4 Evaluation of GPS-BADMM in a Simulation Environment

We evaluate the performance of the global policy learned with GPS for large
variations in target locations, moving targets, and changes in robot dynamics.
To do so, we train a collaborative robot to perform handovers over repeated
trials in a simulation environment with different training regimens and test on
different target trajectories. We measure the performance of the global policy
in terms of the error between the end-effector’s position and the human hand’s

position.

We build upon the BADMM-GPS implementation by Finn et al. [47]. The col-
laborative robot in the handover task is simulated in MuJoCo [167] (Multi-Joint

dynamics with Contact). Fig. 5.1| shows the MuJoCo simulation environment
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built for this study. The robot on the left is a Franka-Emika Panda with 7 degrees
of freedom (DoFs), equipped with a two-fingered gripper. In the remaining text,
we call this robot the “learner”. The environment also includes a pseudo-robot
arm with two DoFs and a cylindrical mass rigidly attached to its end-effector.
In the remaining text, we call this robot the “trainer” or the “tester” depend-
ing on whether it is used to train the global policy or to test the learned global
policy. This robot stands in for the human and “teaches” the learner to perform
handover reaching motions in simulation. The neural network policy used one
hidden layer with 84 units and ReLU (Rectified Linear Unit) activation func-
tion of the form f(z) = maxz(z,0). The policy training was done in Caffe deep

learning framework using the Euclidean loss function.

Figure 5.1: MuJoCo simulation environment. We train a Panda robot arm (left)
to perform handover reaching motions by simulating the reach phase with an-
other robot (right), standing in for the human.
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(a) Static Trainer (b) Static Trainer
(8 Local Controllers) (12 Local Controllers)
Static Tester Static Tester
0.30 0.30
0.25 0.25

(c) Static Trainer (d) Static Trainer
(8 Local Controllers) (12 Local Controllers)
Moving Tester Moving Tester

Figure 5.2: Global policy evaluation for different types of trainers and testers
(continued on the next page). Error-values are clamped to the range [0.0, 0.3]
for better visualization.

5.4.1 Simulation Results

The first research question that we investigate is the spatial generalizability of
the learned global policy, i.e., how does the global policy perform for large spa-
tial differences between training and test locations. To answer this question, we
test the learned global policy at different locations of a static tester on a semi-

hemispherical shell around the learner robot, which represents the workspace
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(e) Moving Trainer (f) Moving Trainer
(8 Local Controllers) (12 Local Controllers)
Moving Tester Moving Tester

Figure 5.2: Global policy evaluation for different types of trainers and testers
(continued from the previous page). In the ‘static” case, the trainer/tester stays
in a fixed configuration. In the ‘moving’ case, the trainer/tester moves with
a human-like trajectory and reaches the locations given by colored dots. Thus
each point corresponds to the final position of the tester’s gripper in a trial, and
the black square markers correspond to the training target locations. The black
round marker corresponds to the learner robot’s gripper’s starting position. The
error between the learner’s gripper position and the tester’s gripper position is
averaged over the last 0.5 seconds of each trial. We find that: 1) Error increases
as the target location is shifted away from the training locations (all figures).
2) Increasing the number of training locations reduces the error (left column vs
right column). 3) Error is higher if the trainer is static and the tester is moving
(tirst row vs second row). 4) Error is more sensitive to location and performs
worse in the worst case if the global policy is trained on a moving target (bottom
row). Error-values are clamped to the range [0.0, 0.3] for better visualization.

of the robot. For each angle in 5 deg increments, we test on a grid of 11 x 11
targets, resulting in 2299 test locations. We initially train the global policy with
eight local controllers for target locations at the corners of the workspace. Each
trial runs for 2 seconds, both the learner and the trainer/tester start moving at
the same time, and the global policy is improved over 12 trials. The test per-
formance is measured as the mean error between the learner’s gripper position

and the tester’s hand position over the last 0.5 seconds of each trial.

Fig. shows the performance of the learned global policy, The training
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Figure 5.3: Distributions of training and testing performance for each target
scenario. Each point is the mean error between the learner’s gripper position
and the tester’s hand position over the last 0.5 seconds of a trial. Error bars
show one standard deviation around the mean of each distribution.

locations are marked with black squares and the learner’s gripper’s initial posi-

tion with a black circle.

Fig. (left) shows the mean, range, and standard deviation of the error.
The mean testing error (128 mm) is more than 6 times the mean training error
(20 mm). The error increases up to 241 mm as the spatial distance between the
training and the testing target locations increases. This issue can be somewhat
addressed by adding four additional local controllers trained with target loca-
tions in the plane dividing the workspace (Fig.[5.2b). For a global policy trained
with these 12 local controllers, the mean and standard deviation of the testing
error is reduced to 69 £ 32mm. The worst case (outlier) testing error remains

very high (284 mm).
Next, we investigate how GPS performs when the target is moving. First,
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Figure 5.4: Mean error and torque for different robot end-effector masses (0.5
16kg). The vertical line represents the baseline mass of the robot end-effector
used during training (2kg). Each error marker corresponds to the mean error
of all testing locations on a semi-hemispherical shell around the robot as shown
in Fig. Torque markers show the mean of the norm of torques applied by
the robot, averaged over the same testing locations. The error remains fairly
constant over a wide range of the robot end-effector mass (up to 4kg), and the
global policy produces total torques proportional to the changes in the robot
mass. Torques are significantly higher for the ’static train, moving test” scenario,
indicating highly inefficient trajectories.

we use the same global policy shown in Fig. (static training) but instead of
a static tester we simulate the tester to execute a human-like trajectory in joint

space [142], given by

Oni = awf—_j‘)) +60; Vi€ l,2, (5.12)
b+e's

where a = 9.05¢™*, b = 8.908¢* and ¢ = 12.87 are empirical coefficients de-
termined by Rasch et al. [142] from human arm motion data. 6,; and 6, are

the initial and final values of the i" joint angle, respectively, ¢ is the movement
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Figure 5.5: Distributions of testing performance for different state representa-
tions described in Section In each case the global policy is trained with 8
local controllers. The number in parentheses represents the number of state
variables in each representation. Each point is the mean error between the
learner’s gripper position and the tester’s hand position over the last 0.5 sec-
onds of a trial. Error bars show one standard deviation around the mean of
each distribution.

duration, while 6} ; and 6, » correspond to the shoulder and elbow joints, re-
spectively. We set 6,1 = 02 = 0, t; = 1, and use inverse kinematics to compute

the final values of 6,1, ), » for a given Cartesian position of the tester’s gripper.

We vary the tester’s trajectories such that its gripper’s final position is on the
same semi-hemispherical shell around the learner robot as before. The global
policy’s performance is again measured as the mean error between the learner’s
gripper position and the tester’s gripper position over the last 0.5s of each trial.
Since we set t; = 1in Eq. this error is calculated after the tester has reached

the final position.

Fig. shows the results for the global policy trained with 8 local con-
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trollers; Fig. (middle) shows the mean, range, and standard deviation of the
error. The performance is worse with a mean testing error of 165 mm for a mov-
ing target, 28.9% higher than the mean testing error for a static target, but the
range of error is comparable. Few target locations result in low errors. For the
global policy trained with 12 local controllers (Fig. 5.2d), the mean testing er-
ror is 99 mm for a moving target, 43.5% higher than the mean testing error for
a static target. The range, again, is comparable, with more target locations, as

compared to the global policy trained with 8 local controllers, having low errors.

That said, the trajectories generated by these “Static Trainer, Moving Tester”
trials are highly inefficient. Fig. [5.4] (center line) shows that the mean torque
i.e. the L? norm of the robot’s joint torques averaged over all test points and

time-steps, is almost double over the trajectory.

A possible way to address this issue is to train the controller with a moving
target, also executing a human-like trajectory in the joint space, as described
in Eq Fig. and Fig. show the performance of the global policy
for various final positions of the tester’s gripper, defined as in previous trials.

Fig.[5.3| (right) shows error distributions.
& &

For the global policy trained with a moving trainer and 8 local controllers
(Fig.[5.2€), the mean testing error is 157mm and thus does not provide a mean-
ingful improvement. Moreover, the variance over the target location is high,
and the worst-case error is 473 mm, 87.7% higher than the maximum error for
the static trainer condition (252 mm). In fact, the GPS process does not con-
verge to a low training error, which is more than 3x that of the static training
results. For the global policy trained with a moving trainer and 12 local con-

trollers (Fig.[5.2f), the mean testing error is reduced to 82 mm, 17.2% lower than
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the mean testing error for the static trainer condition. But the variance of the
performance remains high, with a 461 mm worst-case performance. That said,
an inspection of the generated trajectories and torques shows that this approach
results in more efficient trajectories and torques similar to those achieved with

static targets.

The third research question that we address is how the global policy per-
forms under changes in robot end-effector mass. To investigate this question,
we train the robot with a baseline end-effector mass of 2kg and evaluate the
performance of the global policy for different robot end-effector masses, rang-
ing from 0.5kg to 16kg. Fig. shows the mean error between the learner’s
gripper position and the tester’s gripper position for different robot end-effector
masses. We find that the mean error across the same testing locations shown in
Fig.|5.2|remains largely unaffected between 0.5 — 4kg, but the error increases if
the end-effector’s mass is increased beyond this limit. Fig.[5.4|also shows the
means of the norm of torques applied by the seven joints of the robot for differ-
ent robot masses. We find that the mean increases with an increase in the robot
end-effector’s mass, except when the robot is trained on static targets but tested
on moving targets, where the torques are always high. We also investigated the
effect of changing the total mass of the robot and found that for a baseline mass

of 18.5kg the error remained fairly constant up to 100kg.

In Section5.3.T we proposed different possible state representations. Fig.
shows the performance of the global policy trained with 8 local controllers,
across all three state representations. For policies trained on static targets, the
REDUCED state representation has the lowest variance (best generalization), but

this does not hold for policies trained on moving targets. Overall, a global policy
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trained with the lowest-dimensional RELATIVE state representation (54 dimen-
sions) has a better average performance than the other state representations.
This suggests that lower-dimensional state models may be more appropriate

for GPS-trained handover controllers.

5.5 Implementation of GPS-BADMM on a Collaborative Robot

We train a collaborative robot, a Franka-Emika Panda research robot (“Panda
robot” henceforth), to perform reach-to-handover motions with the GPS-
BADMM algorithml] This is the same robot that we used in the simulation in
the previous section. The robot, shown in Fig. is a 7 degrees-of-freedom
(DoF) robot arm with torque sensors at each joint, allowing adjustable stiff-
ness/compliance and torque control. We use an OptiTrack motion tracking sys-

tem to monitor the positions of the human’s hand and the robot’s end effector.

The robot is controlled via a distributed Robot Operating System (ROS) net-
work across three personal computers (PC) as shown in Fig. One PC runs
the motion tracking software and streams the motion tracking data on a local
network. The second PC converts the motion tracking data into the relevant co-
ordinate frames, computes the state representations described in Section [5.3.1}
and runs the GPS training and testing procedures to generate controls for the
robot. These are sent to a third PC, which is physically connected to the Panda
robot. This third PC runs a real-time kernel as required by the robot manufac-

turer.

As described in the previous section, a RELATIVE state representation had a

IThe code is available at ht tps: //github.com/alapkshirsagar/real-franka-gps
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Figure 5.6: The system setup includes a Panda robot (left), an Optitrack motion
capture system (top), and three PCs communicating through ROS: one collect-
ing motion tracking data (right), one responsible for RL (bottom center), and
one connected to the robot (left).

better overall performance. Here, we use a similar robot-centric state represen-
tation which consists of the robot joint angles 6,., the robot joint velocities 6,, the
positions and velocities of the robot-end effector in the world frame attached to
the base of the robot (p,,p,), and the positions and velocities of the human hand

in the robot end-effector frame (p},p},).

Xt = [eraémpﬁp;;aprap;]t- (513)

The robot’s control input u, consists of the robot joint torques 7: u, = 7,. We do
not operate the gripper attached to the robot arm, since the evaluation focuses

on the reach-to-handover motion.

We build on the GPS-BADMM implementation of White [177], which was
designed for a Kuka LWR robot [14] in the Gazebo simulation environment.
White’s code, in turn, was based on the GPS implementation of Finn [47], de-

signed for a Willow Garage PR2 robot [53]].
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In order to adapt the implementation of White [177] to the physical Panda
robot, we had to tune several parameters, including the initial gains, variances,
and stiffness parameters for the local iLQR controllers, and the PID parameters
used to command the robot back to its initial position, after each trial. Tables
and 5.2/ compare the values used by previous implementations and the one pre-
sented in this paper. For more details about these adaptations, parameters we
refer the reader to [45]. In general, we found that the high gains used in previous
implementations resulted in the robot abruptly halting due to violations of joint
trajectory or Cartesian trajectory requirementsﬂ These requirements consist of
safety limits on the robot’s joints’ positions, velocities, and torques, as well as on
the robot end-effector’s Cartesian position, velocity, acceleration, and jerk. Such
inbuilt limits are common for robot arms designed for close-range human-robot

interaction.

Table 5.1: Comparison of PID parameters of position controller for resetting the
LWR and the Panda robots.

LWR Values [177] Panda Values

Jomt T p Liawp P I D Iiomp
1 2400 0 18 4 6 3 3 1
2 1200 0 20 4 6 3 3 1
3 1000 0 6 4 6 3 3 1
4 700 0 4 4 6 3 3 1
5 300 0 6 2 25 1 1 1
6 300 0 4 2 25 1 1 1
7 300 0 2 2 25 1 1 1

2Franka-Emika Panda Specifications: https://frankaemika.github.io/docs/
control_parameters.html
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Table 5.2: Initial controller parameter values of PR-2, LWR, and Panda robots.

Parameter PR-2[47] LWR [177] Panda
Joint 1 Gain 3.09 24 0.1
Joint 2 Gain 1.08 12 0.1
Joint 3 Gain 0.393 10 0.1
Joint 4 Gain 0.674 7 0.1
Joint 5 Gain 0.111 3 0.001
Joint 6 Gain 0.152 3 0.001
Joint 7 Gain 0.098 6 0.001
Initial Variance 1 30 0.5
Stiffness 0.5 60 1.0
Stiffness Velocity 0.25 0.25 0.5

5.6 Evaluation of GPS-BADMM on a Collaborative Robot

The goals of our evaluation of GPS on a physical collaborative robot are, first,
to examine whether our previous findings, which were performed only in sim-
ulation, replicate, and, second, to investigate the challenges associated with the

use of GPS in a physical HRI setup.

We do so in two stages: First, we test whether policies learned in simulation
can be used in a physical setup (“Sim-to-Real Evaluation”). Then, we try to use

GPS to train policies using the physical robot (“Real-to-Real-Evaluation”).

5.6.1 Sim-to-Real Evaluation

We previously used GPS to train a robot reach-to-handover in a MujoCo simu-
lation environment. We trained a Panda robot for the task with a pseudo-robot
arm with a cylindrical mass rigidly attached to its end-effector, substituting the
human operator. In the first experiment of the present work, we ask whether

the learned policy can be used on a physical Panda robot.

116



We find that the policy trained in simulation fails to generate correct trajec-
tories on the physical Panda robot. This failure is due to two main reasons: dif-
ferences in model parameters between the simulated and real robot and inbuilt

safety constraints on the real robot.

While robot manufacturers provide some information about their hardware
and software, some of it is proprietary or undocumented. As a result, simu-
lation models almost always have to make assumptions about some important
dynamics parameters. In this case, we used a MuJoCo model of the Panda robot
created with the robot’s meshes and specifications from franka_ros’} This model
used the geometry provided by the manufacturer and any existing dynamics
parameters. However, the manufacturer does not provide a damping factor for
each joint, which was set arbitrarily, resulting in poor Sim-to-Real dynamics

transfer.

Furthermore, the Panda robot, like most human-collaborative robots, has
inbuilt safety constraints for joint positions, velocities, and torques (see also:
Section 5.5). In the Sim-to-Real transfer, many of the torques generated by the

GPS policy learned in simulation exceeded these constraints.

It is worth noting here that the GPS algorithm does not readily incorporate
hard constraints. We tried to impose a torque reduction in the simulation train-
ing by adding a penalization term in the RL cost function for out-of-limit veloci-
ties and out-of-limit torques. The torques were reduced slightly but not enough
to run the global policy on the real robot. We also clamped the torques before
the torques were sent to the robot’s joints in MuJoCo. In that case, the robot

could not learn a handover trajectory at all and barely moved from its initial po-

3Franka-Emika Panda MuJoCo Model: https://github.com/vikashplus/franka_
sim
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sition. In summary, due to the architecture of GPS training, undisclosed robot
parameters, and the fact that human-collaborative robots have hard safety con-
straints, it proved difficult to train in simulation and execute trajectories on a

physical robot.

5.6.2 Real-to-Real Evaluation

In the second stage of evaluation, we used GPS to directly train a physical
Panda robot to perform reaching motions towards a human’s hand and tested
the learned global policy for large variations in target locations and moving tar-
gets. To reiterate, we identified large target variations and moving targets as
important characteristics of human-robot handovers that were difficult for GPS

to generalize over.

In the remaining text, we denote the Panda robot as the “learner”, and the
human as the “trainer” or “tester” for the training and testing phase, respec-
tively. Since it is not practical to have a human perform exactly the same reach-
ing motion in all training iterations, we used recorded human hand motions

and replayed them to the robot via ROS.

The first research question examined in our study is the spatial generaliz-
ability of the learned global policy, i.e., how does the global policy perform for
large spatial differences between training and testing locations. To answer this
question, we first tried to use the same training and testing locations as our
previous evaluation in a simulation environment. However, we found that the
Panda robot ran into joint and Cartesian limit violations for those training loca-

tions. Since Panda is a collaborative robot, these constraints are set in firmware
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and cannot be overridden. Instead, we had to reduce the robot’s workspace by
trial-and-error. The final workspace used in our evaluation is shown in Fig.
The overall angular range around the robot was 45 deg. For each angle in 5 deg

increments, we tested on a grid of 3 x 3 targets, resulting in 90 test locations.

Replicating the conditions in the simulation study, we compared two sce-
narios of local controllers (initial conditions): one with 8 local controllers and
another with 12 local controllers. The global policy was trained with these local
controllers for 11 iterations. Both the learner and the trainer/tester commenced
their movement in each trial simultaneously. The learner’s movement lasted
for 5 seconds, while trainer’s/tester’s movement lasted for 1 second. The test
performance was measured as the mean error between the learner’s gripper po-

sition and the tester’s hand position at the last time step of each trial.

The performance of the learned global policy is shown in Fig. The black
circle represents the learner’s gripper’s initial position, and the black squares
represent the training locations. The colored circles indicate the error at the last
time step for each handover location. Mean error and its standard deviation are
shown in Fig.[5.9|(left). The mean testing error (41.7mm) is about twice as large

as the mean training error (22.7mm).

If our previous studies replicate, this test error can be reduced by adding
more local controllers in high error regions. In the current study, we similarly
find that adding four additional local controllers in a vertical plane dividing the
workspace (Fig. [5.8b), reduced the mean and standard deviation of the testing
error. Trained on these 12 local controllers, the mean error of the global policy

was reduced to 29 4 2mm.
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Next, we investigated how GPS performs when the target is moving. First,
we used the same global policy shown in Fig. (static training), but instead of
a static tester, we used a moving target, i.e., a recorded human reaching motion.

The final position of the motion was in a region similar to the one shown in

Fig.

Similar to our simulation studies, we find that the robot generated highly in-
efficient trajectories, and sometimes did not even execute these trajectories due
to safety constraint violations. A possible way to address this issue is to train the
controller with a moving target. To do so, we trained the robot with recorded
human reaching motions and tested the policy on another set of recorded hu-
man reaching motions, as well as on real-time human handovers. Figs. and
show the performance of the global policy for various final positions of
the tester’s gripper, defined as in previous trials. Fig. (right) shows error

distributions.

For the global policy trained with a moving trainer and 8 local controllers
(Fig.[5.8¢), the mean testing error is 124.3mm. Although the test errors are high
as compared to the static tester scenario, the robot stays within the joint and
Cartesian limits. Moreover, the variance over the target location is high, and the
worst-case error is 791.1mm, 442% higher than the maximum error for the static
tester condition (179mm). Surprisingly, the tester’s motion for the worst-case
error is close to one of the training motions. This can be attributed to the highly
non-linear nature of the global policy. Interestingly, GPS does not converge to a
low training error for the moving trainer scenario, averaging at 123.2mm which
is 544% higher than the training error for a static trainer 22.7mm. Training the

global policy with a moving trainer and 12 local controllers (Fig. 5.8d), reduces
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the mean testing error to 37.9mm, which is comparable to a static trainer. The
worst-case error also improves to 138.7 mm. Fig.|5.9|shows the distributions of

training and testing performance for each target scenario.

5.7 Discussion

We evaluated the feasibility of GPS as a learning method for generating robot
reaching motions for human-robot handovers. We evaluated GPS first only in
simulation, and then on a physical collaborative robot. We used a variant of the
GPS algorithm that does not require prior knowledge of the robot dynamics,

and instead, learns locally linear dynamics models from the training data [92].

Previously, GPS was used for manipulation tasks in which the targets were
static and the variations in target locations were small. To successfully com-
plete a handover, however, the robot must cope with a dynamic environment
including unpredictable human motion in a wide range of target locations and
objects of different mass. Our evaluation in simulation thus contributes to the
design of control policies for human-robot handover tasks by providing a de-
tailed analysis of GPS in terms of three of these requirements: moving targets,

large variations in the target location, and a changing end-effector mass.

When evaluating reaching toward static targets only, we find that the perfor-
mance of the GPS-learned global policy does not generalize well to spatial vari-
ations in target locations, and its performance worsens significantly (Fig.[5.2a).
The performance of the global policy can be improved by training it with more
local controllers (Fig. vs Fig.[5.2b). The additional local controllers should

be trained with target locations distributed in the regions with high testing er-
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rors.

When evaluating the global policy with a moving target which was simu-
lated to mimic human reaching motions, the performance of the global policy
decreases on average, but can still achieve reasonable error performance, espe-

cially in areas near the training locations (Fig. vs Fig.[5.2¢).

Similar to the static case, the generalizability of the performance of the global
policy can be improved by training it with more local controllers (Fig. Vs
Fig.[5.2f). However, a global policy trained with static targets results in highly
inefficient trajectories for moving targets, which are not only high-torque but
would be confusing to a human confronted with them. The obvious solution
of training the global policy with moving targets is a double-edged sword. It is
successful in reducing the mean error and results in more legible and low-torque
efficient trajectories, but at the cost of a more high-variance (unreliable) global
policy with significantly larger worst-case errors. Further research is required

to strike the best balance of trajectory shape, efficiency, and reach error.

In a handover task, the robot end-effector’s mass could be different in the
training and testing scenarios due to different objects being handed over. We
found that the trained global policy adapts well to a range of changes in the
robot end-effector’s mass. The robot is able to reach the target locations with
similar accuracy even with large variations in the end-effector’s mass, but only
up to a limit as shown in Fig. This adaptability could be because our cost
function (Eq. results in a global policy that is similar to a proportional
visual servoing controller, which adapts to changes in robot mass by applying
control inputs proportional to the error between the desired position and the

current position. Another possible explanation for the invariance of the error
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under changes in robot mass could be that changes in the robot’s mass do not
have a large effect on the robot’s trajectory in state-space, and hence, on the
performance of the global policy. Contrarily, shifting the target location in the
Cartesian space away from the training locations also shifts the robot’s trajectory
away from the explored region of the robot’s state-space, and thus worsens the

global policy’s performance.

In contrast to prior works on GPS, we also conducted an exploratory study
of the effect of different state representations on the performance of GPS. We
found that removing the human’s joint angles and velocities from the state rep-
resentation, and expressing the human hand’s position and velocity in a ref-
erence frame attached to the robot gripper, improved the performance of the
trained global policy. This suggests that a low dimensional state-space would
be more suitable for GPS, even though it contains less information about the

task dynamics.

Our attempts to transfer policies learned on a simulated robot to the physical
setup proved infeasible. We found that the robot runs into joint and Cartesian
limits and halts almost immediately. This can be attributed to the differences be-
tween the simulation model’s dynamics and the real robot’s dynamics. Tuning
the simulation model dynamics parameters to match the real robot’s parameters
is often not possible owing to a large number of possibilities and undisclosed

manufacturer parameter settings.

Though our evaluations in simulation found GPS to be robust to changes
in the robot’s dynamics within a certain range, our investigations on a real
robot showed that GPS is not robust enough to directly transfer learning from

simulation on a robot with unknown dynamics to a real robot. That said, a
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higher-precision simulation model might allow for better Sim-to-Real transfer
and automatically generating such a model could be a fruitful area of future
research. Another hurdle for Sim-to-Real transfer of learned GPS policies lies
in the prevalence of built-in safety limits found in human-collaborative robots,

and the difficulty to impose such limits in the GPS training phase.

When GPS was used to directly train the physical robot, we found that the
robot runs into these safety constraints during the training phase. To avoid
these violations, we had to reduce the robot’s workspace by trial-and-error. In
this reduced workspace (Fig.[5.7), we found that most of our results from the
simulation environment replicate. When the robot is trained to reach only static
target locations, the global policy performance can be improved by adding local
controllers in regions with highest test errors (Fig. compared to Fig.[5.8b).
When evaluating the global policy trained with static targets on a moving test
target, the robot generates highly inefficient trajectories, sometimes resulting in
halts due to joint limit violations. To overcome this issue, we trained the global
policy with moving targets. Nevertheless, this solution is not free of drawbacks.
It successfully reduces the mean error and results in more efficient and low-
torque trajectories, but also results in a high-variance (and therefore unreliable)
global policy with significantly larger worst-case errors. This issue can be ad-
dressed by adding local controllers to the training phase, improving the global
policy performance (Fig.[5.8d). These findings also support our previous find-
ings in simulation, namely that GPS works best with variable moving targets
when the space of possible end-positions is covered densely with the training

end-positions.

We hope that our findings can contribute to the understanding of the chal-
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lenges and applicability of GPS in a real-world human-robot interaction context.
GPS continues to be a promising approach, but to be useful for safety-critical
scenarios around humans, it needs to take into account the safety constraints
required in such contexts. In addition, while GPS-BADMM is theoretically ag-
nostic to the robot’s dynamics, there is a need for highly accurate dynamics
models to allow training in simulation, which may often be required. For exam-
ple, it would be infeasible to have a human repetitively provide training data
around a physical robot, requiring good Sim-to-Real performance. These chal-

lenges provide a fertile ground for future research.
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Figure 5.7: The training and testing locations for 8 and 12 local controllers. The
squares represent the initial training locations, and the circles represent the test-
ing locations. This region was selected by trial and error to ensure that the robot
does not run into joint/Cartesian limits in the training/testing process. For 12
local controllers, additional 4 training locations are located in a vertical plane
dividing the workspace.
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Figure 5.8: Global policy evaluation for different types of trainers and testers.
The black circle represents the learner’s gripper’s initial position, and the black
squares represent the training locations. In the ‘static’ case, the trainer/tester
stays in a fixed configuration. In the ‘moving’ case, the trainer/tester moves
with a human-like trajectory (that was recorded in advance) and reaches the lo-
cations given by colored dots. Thus, each point corresponds to the final position
of the tester’s gripper in a trial. The error between the learner’s gripper posi-
tion and the tester’s gripper position is calculated over the last time step of each
trial. Error-values are clamped to the range [0.0, 0.1] for better visualization.
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CHAPTER 6
ROBOT GAZE IN HUMAN-TO-ROBOT HANDOVERS

6.1 Introduction

Our second research direction concerns robot gaze behaviors when receiving
an object from a human. Past research has shown that the robot’s head gaze
behaviors affect the subjective experience and timing of robot-to-human object
handovers [115,/188,48,83] (See Section: . However, all of these works only
studied robot-to-human handovers, where the robot was the giver. Human-to-
robot handovers, where the robot is the receiver, are equally important with
many applications in various domains. Therefore, we investigate robot gaze

behaviors in human-to-robot handovers.

First, to find candidates for robot gaze behaviors, we analyze gaze behav-
iors of human receivers in human-to-human handovers by annotating gaze lo-
cations in over 14000 frames of a public data-set of handovers [25]. Our cat-
egorized dataset of frame-by-frame gaze labels complements previous studies
on giver’s gaze behaviors in human-human handovers [115] and provides new

insights into the receiver’s gaze behaviors.

Second, we implement and compare four human-inspired robot head gaze
behaviors during the reach phase of human-to-robot handovers. We conduct

two human-to-robot handover studies, a video study, and an in-person study,

A substantial portion of this chapter is taken from [81} 46] ©2019 IEEE. Reprinted, with per-
mission, from A. Kshirsagar, M. Lim, S. Christian and G. Hoffman, “Robot Gaze Behaviors in
Human-to-Robot Handovers” IEEE Robotics and Automation Letters, 2020. Reprinted by per-
mission from Springer Nature Customer Service Center GmbH, International Journal of Social
Robotics, T. Faibish*, A. Kshirsagar®, G. Hoffman and Y. Edan, “Human Preferences for Robot
Eye Gaze in Human-to-Robot Handovers”, ©2022.
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to compare people’s experiences of handovers with these gaze behaviors. In the
video study, participants compare videos of a handover from a human actor to a
robot exhibiting these four gaze behaviors. In the in-person study, participants
physically perform object handovers with the robot and rate their experiences of
the handovers for each of the four gaze behaviors of the robot. We find that—for
observers of a handover—a transition gaze, in which the robot initially looks at
the giver’s face and then at the giver’s hand, is perceived as more anthropomor-
phic, likable, and communicative of timing compared to continuously looking
at the giver’s face or hand. We also find weaker evidence that—for participants
in a handover—continuously looking at the giver’s face or initially looking at
the face and then at the giver’s hand is perceived as more anthropomorphic and
likable compared to continuously looking at the giver’s hand. We do not find
any evidence that a robot’s head gaze behaviors have an effect on the reach-start
time of a giver, defined as the difference between the starting of the robot’s and

the human’s motions, in robot-initiated human-to-robot handovers.

Finally, we compare three human-inspired robot eye gaze patterns across all
three phases of the handover process: reach, transfer, and retreat, to extend the
above studies which only focused on the reach phase. Additionally, we inves-
tigate whether the object’s size or fragility or the human’s posture affects the
human’s preferences for the robot gaze. We conduct two sets of user studies
(video and in-person), where a collaborative robot exhibits these gaze behav-
iors while receiving an object from a human. We find that, for both observers
and participants in a handover, when the robot exhibits Face-Hand-Face gaze
(gazing at the giver’s face and then at the giver’s hand during the reach phase
and back at the giver’s face during the retreat phase), participants consider the

handover to be more likable, anthropomorphic, and communicative of timing
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(p < 0.0001). However, we do not find evidence of any effect of the object’s size

or fragility or the giver’s posture on the gaze preference.

Note on contributions

The second set of studies, which investigated robot eye gaze for handovers of
different object types, were carried out in collaboration with Tair Faibish (Master
of Science, Department of Industrial Engineering and Management, Ben-Gurion
University of the Negev, Israel). Both collaborators had an equal contribution.
The study design and results are presented in detail in [45], and an abridged

version is included in Sections

6.2 Annotations of Gaze Behaviors in Human-Human Han-

dovers

To examine human gaze behaviors in a handover, we performed frame-by-
frame video analysis of a public dataset of human-human handovers [25]. The
dataset consists of more than 1000 videos of object handovers with 18 volun-
teers, 10 objects, and several handover scenarios. The handover scenarios vary
in terms of experiment type (volunteer-volunteer or volunteer-experimenter),
the role of the volunteer (giver or receiver), and starting phase (with approach
or without approach). We only considered the volunteer-volunteer handovers
as these would be more natural. This gave us a total of 288 videos each for givers
and receivers recorded at 8fps and a resolution of 1280 x 720 pixels. In total, we

coded 14214 frames of handover videos. We used video analysis even though
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the dataset contained motion capture data for participants” heads, as we found
that gaze is often enacted only with the participant’s eyes, without noticeable

head movement.

We annotated each frame with the following discrete variables {G: Giver, R:

Receiver

1. G’s gaze: R’s face/R’s hand/Own Hand /Other
2. G’s phase: Reach/Transfer/Retreat
3. R’s gaze: G’s face/G’s hand/Own Hand/Other

4. R’s phase: Reach/Transfer/Retreat

Here, in the “reach” phase the persons move their hands toward the han-
dover location, in the “transfer” phase both persons hold the object, and in the
“retreat” phase the persons move their hands back to the rest position. In the
videos, it was difficult to distinguish whether a person was looking at the other
person’s hand or the handover location. In such cases, we assumed that the in-
dividual in question was looking at the other person’s hand. This choice was
also motivated by the intuition that the handover location is not known to the

person a-priori.

To validate our video-coding scheme, we had another coder annotate a part
of the data consisting of 64 out of 288 videos, which makes for 22.2% of the total

data. We found the inter-coder agreement to be 80.9%.

IThe annotations are available at:
https://github.com/alapkshirsagar/handover—gaze—annotations/
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6.3 Studies of Robot Gaze in the Reach Phase of Human-to-

Robot Handovers

We are interested in designing gaze behaviors that a robot should exhibit when

it reaches to receive an object from a human. We conduct two within-subject

studies, a video study, and an in-person study, to investigate the likeability,

anthropomorphism, and timing communication of four human-inspired robot

gaze behaviors in human-to-robot handovers. Our studies seek to answer the

research questions: Which human-inspired robot gaze behavior is preferred by

an observer of a human-to-robot handover? Which human-inspired robot gaze

behavior is preferred by the human giver in a human-to-robot handover?

6.3.1

Receiver’s Gaze

Giver’'s Gaze

Gaze Behaviors in Human-Human Reach

\ H

Giver's Hand | Reach 8.10 frames
Receiver’s Hand i Reach 7.53 frames
( !
Hand | Giver’s Hand 199/288 = 69.1%
1
1
Short Face-Handi Giver's Face Giver’s Hand 62/288=21.5%
Face ! Giver’s Face 14/288=4.9%
Long Face-Handi Giver’s Face Giver’s Hand 8/288=2.8%
\ 1
7 :
Hand Receiver’'s Hand 103/288=35.8%
IShort Face-Hand| Receiver’s Face Receiver’'s Hand 87/288=30.2%
Face Receiver’s Face 35/288=12.2%
Long Face-Hand Receiver’s Face | Receiver’s Hand | 26/288=9.0%

Figure 6.1: Analysis of gaze behaviors in the reach phase of human-human han-
dovers: The most frequent gaze behavior in the reach phase of the handover is
Hand gaze in which the person continuously looks at the other person’s hand.
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We analyzed the gaze annotations described in Section [6.2] to find the most
frequent gaze behaviors in human-human handovers. We focused on the ini-
tial (“reach”) phase of the handover, in which both agents extend their hands
toward the handover location. Figure |6.1|shows the summary of video annota-

tions for this phase.

We found the following gaze patterns to be the most frequent ones:

1. Hand gaze: Continuously look at the other person’s hand.
2. Face gaze: Continuously look at the other person’s face.

3. Short Face-Hand gaze: Initially look at the other person’s face and then at
their hand. The duration of the Face gaze is less than or equal to half the

duration of the reach phase.

4. Long Face-Hand gaze: Initially look at the other person’s face and then at
their hand. The duration of Face gaze is more than half of the duration of

the reach phase.

For both givers and receivers, gazing at the other participant’s hand was the
most frequent behavior. However, this was more pronounced for the receiver’s
gaze, with almost double the frequency (69.1% vs. 35.8%) for the Hand gaze.
This initial finding emphasizes the need for a separate study of robot handover

gaze in the robot-as-receiver role.

6.3.2 Video Study

In the first study, participants watched and compared the robot gaze behav-

iors in videos of human-to-robot handovers. We recorded videos of an actor
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handing over an object to a Kinova Jaco-2 robot arm, accompanied by a simple
robot head. Fig.[6.2(a) shows a snapshot of a video recording. The robot arm
had seven degrees of freedom and a three-fingered gripper. The robot head had
four degrees of freedom and a 7-inch screen that displayed a static image of two
eyes. We used an OptiTrack motion tracking system to track the positions of the

human’s hand, the robot gripper, and the object.

The robot arm was autonomous and programmed to reach a predefined po-
sition once the handover began. The robot grasped the object when the object
was close enough. Finally, the robot retreated to its home position after the hu-

man released the object and started to retreat.

We programmed the head of the robot to exhibit the following four gaze

behaviors:

1. Face gaze: Continuously look at the giver’s face. The face gaze location

was programmed manually to a fixed location.
2. Hand gaze: Continuously look at the giver’s hand.

3. Short Face-Hand transition gaze: Initially look at the giver’s face and transi-
tion to the giver’s hand. The transition began as soon as the reach phase

started. Thus the Face gaze was shorter than the Hand gaze.

4. Long Face-Hand transition gaze: Initially look at the giver’s face and transi-
tion to the giver’s hand. The transition began as soon as the robot’s reach

phase ended. Thus the Face gaze was longer than the Hand gaze.
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Figure 6.2: The experiment setup consisted of a Kinova Jaco-2 robot arm, a robot
head, and an OptiTrack motion tracking system with 12 cameras. (a) shows a
video frame of an actor handing over an object to the robot, used in the video

study. (b) shows a diagram of the setup for the in-person study.

Procedure

The study was conducted in a laboratory environment and the experimenter
left the room after the participant started the study. Participants gave online
consent, read the instructions, and then completed a practice session followed
by 12 actual study sessions. In each session, they watched two handover videos,

one after the other. The 12 sessions consisted of the six possible pairings of the
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four gaze patterns and their reverse order. The instructions at the start of the
experiment as well as the caption for each video stated that participants should
pay close attention to the robot’s head movement in the video. After every two

videos, they were asked to answer the following questions:

1. Which handover did you like better? (1st or 2nd)

2. Which handover seemed more friendly? (1st or 2nd)

3. Which handover seemed more natural? (1st or 2nd)

4. Which handover seemed more humanlike? (1st or 2nd)

5. Which handover made it easier to tell when, exactly, the robot wanted the

giver to give the object? (1st or 2nd)

6. Any other comments (optional)

This questionnaire is identical to the one in Zheng et al. [188]. Questions 1 and 2
measure the metric likability (Cronbach’s a = 0.83). Questions 3 and 4 measure
the metric anthropomorphism (Cronbach’s o = 0.91). Question 5 measures the

metric timing communication. Question 6 is to elicit open-ended responses.

Participants

A total of 24 participants participated in the experiment (13 Males, 11 Females).
Participants were recruited through emails and posters. Each study session
lasted for about 15 minutes. The participants were compensated with a $5 gift
card for participating in the study. The order of the videos was randomized and

counterbalanced among the 24 participants.
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Preference Ranking Method

Participants evaluated the six pairings of four gaze conditions and their reverse
order (for example, Face gaze vs. Hand gaze and Hand gaze vs. Face gaze). We
used one-sample Wilcoxon signed-rank tests to check if participants exhibited
any bias towards selecting first or the second handover. We did not find a bias
[likeability: S = -156.5. p = 0.90, anthropomorphism: S = -610, p = 0.63, timing

communication: S =0, p = 1.00].

Table 6.1 shows the number of participants, out of the 24 participants, who
chose the row condition over the column condition. For example, a rating of 5
for anthropomorphism in row “Face” and column “Hand” indicates that five par-
ticipants chose Face gaze over Hand gaze in the pairwise comparisons. a, rep-
resents the number of times row condition ¢ “wins” against other conditionsf]
P, is the probability that row condition 7 is preferred over other conditions. We
used the iterative estimation algorithm proposed by Hunter [67] to compute the

P; values.

Hypotheses

Both studies tested the same single hypothesis across all three dependent mea-
sures, namely that there is a difference in the probability for preference as a
consequence of the gaze type, i.e. P, # P; Vi # j. We did not have a-priori

hypotheses about the order of the conditions.

2The ratings for each row were obtained by averaging the ratings for both ordered pairwise
comparisons. a; shows the sum of ratings in each row. Since each subject compared condition i
with g — 1 conditions, where g = 4 is the number of gaze behaviors, a; represents the number of
“wins” against other conditions in n x (g—1) comparisons, where n is the number of participants.
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Quantitative Results

We used the Bradley-Terry method to evaluate participants’ rankings of the
likeability, anthropomorphism and timing communication of gaze behaviorsf]
The results are shown in Figure As all of the x? values are large (p < 0.0001),
we conclude that the gaze condition affects ratings. Participants prefer the Face-
Hand transition gazes more than Hand and Face gazes. Also, Face gaze is the least

preferred condition.

Likability (x2 = 62.99) I
Anthropomorphism (x2 = 54.41) I

Timing Communication (x2 = 69.16) I

W Face Hand ™ Long Face-Hand M Short Face-Hand

Figure 6.3: x? values and win-probabilities of gaze conditions in the video study
for the three dependent measures. (For Face gaze, the win-probabilities are 0.04,
0.05, and 0.03 for Likability, Anthropomorphism, and Timing Communication,
respectively.)

Open-ended Reponses

Participants were asked to write optional comments after each session. 16 out

of 24 participants gave at least one additional comment.

Eight participants made Face vs Hand gaze comparisons. Four said that they
preferred Hand over Face gaze because it signalled attentiveness, while three

said they preferred Face gaze because Hand gaze signalled shyness:

3Following the procedure used by Yamaoka et. al [181], for each metric, the value of x3 =
ng(g —1)in2 — 2BIn10, where B = n ;. log(P; + P;) — >, a;logP;, should be greater than the
a = 0.005 point of a x? distribution with (g — 1) degrees of freedom.
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P010: “The aparent attentiveness in the second [Hand gaze] was reassur-

ance [sic].”

P023: “I felt that in the 2nd one [Hand gaze] it was shy.”

Seven participants implied at least once that they preferred some head

movement over no head movement.

P0O07: “Some movement of the head is more friendly than no movement.”

P006: “The lack of a head tilt in the second one seems much more artificial

and less human-like.”

Four out of ten participants, who commented on comparing the two transi-
tion gazes, mentioned that they could not distinguish between them, while five

of them said that they preferred Short Face-Hand transition gaze.

P007: “Both [transition gazes] seemed identical.”

P006: “The initiation of the head tilt in the second one [Short Face-Hand
transition gaze] made it more apparent when the robot wanted to receive the

object, first one tilted the head after it was already being handed the object.”

6.3.3 In-person Study

To study people’s perceptions of robot gaze behaviors in handovers with a real

robot, we ran a second study. A separate set of participants performed object
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Table 6.1: Combined preferences of gaze behaviors in the video study. Larger
a; and P, indicate a stronger preference to the row condition. L-FH = Long Face-
Hand transition gaze, S-FH = Short Face-Hand transition gaze

Face Hand L-FH S-FH a; P,

Face 0 6.75 275 225 11.75 0.04
Hand 17.25 0 35 475 255 0.09

Likability L-FH 2125 205 0 8 4975 034
SFH 2175 1925 16 0 57 052

Face 0 5 35 325 1175 0.05
Anthropomorphism  Hand 19 0 5 475 2875 0.12

L-FH 205 19 0 8.5 48  0.33

S-FH 20.75 1925 155 0 55.5 0.50

Face 0 55 3 2 10.5 0.03

Timing Hand 185 0 3.5 4 26 0.09
Communication L-FH 21 20.5 0 7 48.5 0.31
S-FH 22 20 17 0 59 0.57

handovers with the Kinova Jaco-2 arm, accompanied by the same simple robot
head. The setup is shown in Figure |6.2| (b). The robot arm and the robot head

were programmed in the same way as the video study described in Section

Procedure

After entering the lab, participants electronically signed the consent form and
answered a question about their familiarity with a collaborative robot such as
the one shown. The mean familiarity with this type of robot was found to be

low (M=1.29, SD = 0.55, on a scale of 1-5).

The experimenter then verbally described the experiment and participants
completed a practice session. This was followed by 12 study sessions. In each
session, the participants performed two handovers with the robot, sequentially.

The object being handed over was a partially filled water bottle weighing about
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200g. The 12 sessions consisted of the six possible pairings of the four gaze
patterns and their reverse order. After every session, they were asked to answer

the same choice questions as in the video study.

Participants

A total of 24 participants, different from the participants in the video study, par-
ticipated in the experiments (6 Males, 18 Females). Participants were recruited
through an online recruitment system. Each study session lasted for about 15
minutes. The participants were compensated with a $5 gift card. The order of

the conditions was randomized and counterbalanced.

Metrics and Hypotheses

We used the same preference ranking method as in Study 1, described in Sec-

tion

Table [6.2) shows the number of participants, out of the 24 participants, who
chose the row condition over the column condition. We had the same three hy-

potheses about overall differences in preferences caused by gaze manipulation.

In addition, in Study 2, we measured the human’s reach start time in each han-
dover, defined as the difference between the start of the human hand’s reaching
motion and the start of the robot arm’s reaching motion. Previous studies on
robot-to-human handovers found that the robot’s gaze behavior affected the
human’s reach start time [115,188]. We were interested to see if the robot’s gaze

behavior had a similar effect in a human-to-robot handover.
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Table 6.2: Combined preferences of gaze behaviors in the in-person study.
Larger a; and P, indicate a stronger preference to the row condition. L-FH =
Long Face-Hand transition gaze, S-FH = Short Face-Hand transition gaze

Face Hand L-FH S-FH a; P,

Face 0 15 145 1575 4525 0.35
Hand 9 0 7 775 2375 0.14

Likability LFH 95 17 0 13 395 028

S-FH 825 16.25 11 0 355 023

Face 0 14.25 13 15 4225 0.31

. Hand 9.75 0 6.75 7.5 24 0.14
Anthropomorphism

L-FH 11 1725 0 13.25 415 0.30
S-FH 9 16.5 10.75 0 36.25 0.24

Face 0 115 115 135 36,5 0.25

Timing Hand 125 0 7 8.5 28 0.17
Communication L-FH 125 17 0 13 425 0.32
S-FH 105 15.5 11 0 37 025

Quantitative Results

We used one-sample Wilcoxon signed-rank tests to check if participants exhib-
ited any bias towards selecting the first or the second handover. We did not find
a bias [likeability: S = -1481, p = 0.25, anthropomorphism: S = -684, p = 0.59,
timing communication: S = -289, p = 0.81]. We conducted a one-way ANOVA
on the human’s reach start time for four gaze conditions. The results indicated

no detectable difference between the four conditions (F' = 0.429, p = 0.732).

We used the Bradley-Terry method [16] to evaluate participants’ rankings
of the likeability, anthropomorphism, and timing communication of gaze be-
haviors. The results are shown in Figure Compared to Study 1, we de-
tected a weaker effect of condition on likability and anthropomorphism, with
p = 0.01 and p = 0.03 respectively, and virtually no effect on timing communi-

cation (p = 0.21). Participants rated all dependent measures lower in the Hand
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gaze condition than in other conditions.

Likability (x2 = 10.58)

Anthropomorphism (x2 = 9.07) 0.31

Timing Communication (x2 = 4.52)

B Face Hand ™ LongFace-Hand M Short Face-Hand

Figure 6.4: x? values and ratings of gaze conditions in the in-person study for
the three dependent measures.

Open-ended Responses

20 out of 24 participants wrote at least one additional comment. In their com-
ments, contrary to the comments in our video study, nine out of 14 participants
said that they preferred the Face gaze over the Hand gaze, as it was more en-

gaging, human-like, and friendly.

P008 - “With a task this simple, maintaining eye contact feels more en-

gaged/natural than looking at the object.”

P016 - “In the second one [Face gaze], the robot looked me in the eye and

seemed more humanlike.”

Six participants implied at least once that they preferred some head move-

ment over no movement.

P014 - “No movement at all with 2nd one [Hand gaze] made it less human-

like.”
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P023 - “The ones where the head moves seem more natural and humanlike.”

Six out of the 12 participants who gave comments on the comparison be-
tween two transition gazes said that they could not distinguish between the
two transition gazes, while four said that they preferred the Long Face-Hand

transition gaze.

P008 - “Both tries felt roughly the same to me.”

P016 - “The robot head appeared to move more naturally in the second

handover [Long Face-Hand transition gaze].”

6.3.4 Discussion

Participants in a handover combine two types of gaze behavior: a task-oriented
gaze toward the hand or the object, and a face-oriented gaze for social engage-
ment. Prior studies with robots as givers showed that Face gaze is beneficial as it
causes more positive evaluations of the robot. Unfortunately, there is not much
prior literature to draw on with respect to receiver gaze in handovers, whether
the receiver is a human or a robot. In our analysis of human-human handovers,
most receivers used Hand gaze over other types of gazes, at almost double the
rate as givers. This might indicate a stronger need for receivers to keep their
gaze focused on the task, sacrificing the social benefits of eye contact. When
the receiver is a robot, our studies paint a different picture: Task-oriented Hand
gaze was consistently ranked as less preferred, especially when compared to a

behavior that shifted from Face gaze to Hand gaze.
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What about consistent face gazing? Comparing our video and in-person
studies reveals different results for the preference of the Face gaze. When partic-
ipants watched recorded videos of a human handing over an object to a robot,
they preferred the Hand gaze over the Face gaze. Open-ended responses sug-
gested that looking at the hand signaled that the robot was more attentive. In
contrast, when the participants physically performed the object handover with
the robot, the Face gaze dominated the Hand gaze. Open-ended responses sug-
gested that looking at the face was a friendly gesture. This is in line with pre-
vious research that shows that people have different preferences when they are
interacting with a robot in the first person versus when they are observing video
interactions of a third person with the same robot [17]. However, these previous

studies showed mostly a change in degree, not a categorical shift as found here.

In the video study, participants preferred the Face-Hand transition gaze be-
haviors to consistent Hand or Face gaze behaviors, citing concerns that the lack
of movement was unnatural. Despite similar concerns in the in-person study;,
participants’ preference ratings for Face-Hand transition gaze and Face gaze were
similar. All of them were higher than the Hand gaze, indicating that the social
benefits of the Face gaze—especially in terms of likability—overcome some of

the concerns associated with lack of movement.

Combining the findings of the two studies, our recommendation to HRI de-
signers is to implement a Face-Hand transition gaze when a robot is receiving
objects from a human. There seems to be no preference for the timing of the
transition. The least recommended behavior is a static Hand gaze, even though

it is the most common behavior of a human receiver.

A human receiver may have to focus on the receiving task more than a robot
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receiver who can be equipped with a more flexible sensor system. The robot
should take advantage of this flexibility and incorporate the beneficial Face gaze
behavior. If the robot does not have an actuated gaze, a Face gaze is preferred

over a Hand gaze.

In previous studies [115,188], researchers found that the robot’s gaze behav-
ior had an effect on the reach start time of the human in robot-to-human han-
dovers. However, we did not find a similar effect of the robot’s gaze behavior on
the human’s reach start time in human-to-robot handovers. A possible reason
is that the repetitive handovers caused learning or fatigue, affecting the reach-
ing behavior. However, the same prior works that found timing differences
across gaze conditions also used repeated trials [115, [188]. This may suggest
that, while the robot gaze could serve as a timing cue in robot-to-human han-

dovers, it might not be an effective timing cue in human-to-robot handovers.

In contrast to prior works, which conducted in-person studies, we con-
ducted a video study alongside an in-person study. Video studies offer more
manipulation control and thus more internal validity, whereas in-person studies
have more ecological validity. We used a different set of participants to prevent
order effects. We did not have specific hypotheses that warranted a quantitative
comparison of the data from the two studies, and thus presented the difference

only qualitatively.

6.4 Studies of Robot Gaze in Human-to-Robot Handovers

Our studies in Section [6.3| were limited to a specific scenario where the giver

stood in front of the robot and handed over a specific object (a plastic bottle) to
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the robot. We conduct follow-up studies to expand and generalize the findings

from our previous studies in three ways:

1. We investigate if the object’s size (small/large), stiffness (fragile/non-
fragile), and the giver’s posture (standing/sitting) affect the human’s pref-

erences for robot eye gaze in human-to-robot handovers.

2. We consider gaze behavior in all three phases of a handover instead of just

the reach phase.

3. We use robot eye gazes instead of head gazes, as eye gazes are more promi-

nent than head gazes in natural human-human handovers

6.4.1 Hypotheses

We hypothesize that:

e H1: People prefer certain robot gaze behaviors over others in terms of

likability, anthropomorphism, and timing communication.

* H2: Object size affects the user’s ratings of the robot’s gaze in a human-to-

robot handover.

e H3: Object fragility affects the user’s ratings of the robot’s gaze in a

human-to-robot handover.

* H4: The user’s posture (standing and sitting) affects the user’s ratings of

the robot’s gaze in a human-to-robot handover.

¢ H5: Observers of a handover and participants in a handover have different

preference ratings of the robot’s gaze in a human-to-robot handover.
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H1 is motivated by our previous studies which found evidence for different
user preference ratings for robot gaze behaviors. We do not have a-priori hy-
pothesis about the preference order of gaze behaviors. H2 and H3 are based on
the intuition that the object’s size and fragility could affect the preferred gaze
behavior of a receiver. For example, when receiving large or fragile objects, the
robot could be expected to convey attentiveness by looking at the giver’s hand,
whereas, when receiving small or non-fragile objects, the robot could be better
off looking at the giver’s face to convey friendliness. H4 is based on the intu-
ition that a standing giver may have different preferred gaze behavior of a re-
ceiver than a sitting giver. For example, a standing person could like the robot
gaze at their face as their eyes are at the same level, whereas a sitting person
could feel uncomfortable with the robot gazing down at their face. H5 results
from our previous finding that observers of a handover and participants in a
handover had different preference ratings of robot gaze behaviors in the reach
phase. This research examines whether this holds for robot gaze behaviors in all
three phases of a handover and handovers with different object types and giver

postures.

6.4.2 Gaze Behaviors in Human-Human Handovers

To design human-inspired robot gaze behaviors for human-to-robot handovers,
we extend our previous analysis of human gaze behaviors in the reach phase
of a handover (Section to the three phases of a handover: reach, transfer,
and retreat. As shown in Fig.|6.5| we find that the most common gaze behaviors

employed by people during handovers are:
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1. Hand-Face gaze: The person continuously looks at the other person’s hand
during the reach and the transfer phases, and then looks at the other per-
son’s face during the retreat phase. The transition from hand to face hap-
pens slightly after the beginning of the retreat phase. More than 50% of
receivers showed this behavior, whereas, only 25% of the givers in those

videos exhibited this behavior.

2. Face-Hand-Face gaze: During the reach phase, the person initially looks at
the other person’s face and then at the other person’s hand. They then con-
tinue looking at the other person’s hand during the transfer phase. Finally,
they look at the other person’s face during the retreat phase. The transition
from face to hand occurs halfway through the reach phase, while the tran-
sition from hand to face occurs halfway through the retreat phase. More

than 40% of givers exhibited this gaze, whereas only 25% of receivers did.

3. Hand gaze: Continuously looks at the other person’s hand. The least fre-
quent gaze, only 17.4% of receivers and 15.9% of givers showed this be-

havior.

6.4.3 Overview of Studies

We conducted two within-subject studies: a video study and an in-person study.
The video study aimed to investigate an observer’s preferences of robot gaze be-
haviors, whereas the in-person study aimed to investigate a giver’s preferences

of robot gaze behaviors.

A total of 144 undergraduate industrial engineering students participated

in the experiment (72 in each study) and were compensated with one bonus
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point to their grade in a course for their participation. The average participation
time was about 25 minutes. In the video study, there were 34 females and 38
males aged 23-29. In the in-person study, there were 36 females and 36 males
aged 23-30. The study design was approved by the Human Subjects Research
Committee at the Department of Industrial Engineering and Management, Ben-

Gurion University of the Negev.

The following three gaze behaviors were implemented on a Sawyer cobot
based on insights from the human-human handover analyses:
i. Hand-Face gaze: The robot’s eyes continuously looked in the direction of the
giver’s hand during the reach and transfer phases. After the robot started to
retreat, the eyes transitioned to look at the giver’s face. Both the hand gaze and
the face gaze were programmed manually to fixed locations.
ii. Face-Hand-Face gaze: The robot’s eyes looked at the giver’s face during the
reach phase, the giver’s hand during the transfer phase, and the giver’s face
during the retreat phase.
iii. Hand gaze: The robot’s eyes continuously looked in the direction of the

giver’s hand.

Given that the human gaze behavior was tied to the handover phase, as de-
scribed above, we did not use fixed timings for the robot trajectory. Instead, the
robot was programmed to use the sensor information to initiate the handovers
and gaze behaviors depending on the phase of the handover. The robot arm was
programmed to reach a predefined position once the giver started the handover
which was detected using a range sensor. The robot’s gripper was equipped
with an infrared proximity sensor, and it grasped the object when the object

was close enough. The robot retreated to its home position after grasping the

151



object. The robot was programmed in the Robot Operating System (ROS) en-
vironment with Rethink Robotics” Intera software development kit (SDK). The

sensors were interfaced with the robot using an Arduino micro-controller.

Fig.[6.6(a) shows a snapshot of a video recording illustrating the experimen-

tal setup

6.4.4 Video Study of Human-to-Robot Handovers
Experiment Procedure and Evaluation

The study was conducted remotely, and each participant received links to the
videos, the electronic consent form, and online questionnaires with study in-
structions. After signing the consent form and reading the instructions, they
completed a practice session followed by 12 study sessions. Each session in-
cluded one of the six pairing of the gaze patterns listed in Table for a single
condition out of the three listed in Table So that each participant watched

all six pairs of gaze patterns twice, one for condition a and one for condition

“The videos are available at: https:/ /youtu.be/9dD1YHG2Nco

>To represent objects of different fragility a plastic bottle and a glass bottle were used. In or-
der to examine people’s perceptions about the fragility of these objects, we conducted an online
survey. This survey was conducted post-experiment. A total of 24 participants responded to the
survey. The participants were undergraduate students from the Department of Industrial En-
gineering and Management at Ben-Gurion University, similar to the students who participated
in our video and in-person experiments. The participants were told that this study deals with
object handovers between a human and a robot.

The survey included 10 pictures of objects, made from different materials. The plastic bottle
and the glass bottle used in our experiment were among these objects. Each picture was fol-
lowed by a yes or no question: “Do you perceive this object to be fragile?”. Results revealed
that all of the 24 participants perceived the plastic bottle to be non-fragile. 23 out of 24 partic-
ipants perceived the glass bottle to be fragile. Additionally, when asked the same question for
three other different plastic and glass bottles, 24 participants denoted the plastic bottles as non-
fragile and 23 denoted the glass bottles as fragile. Details about this survey are available in [45].
This supports our decision to choose plastic and glass bottles to represent objects of different
fragility.
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b. To reduce the recency effect, i.e. participants forgetting the previous condi-
tions, counterbalanced pairwise comparisons were performed instead of three-
way comparisons. All six pairwise comparisons were combined into a ranked
ordered list of three gaze patterns [67]. In each session, they watched two han-

dover videos, consecutively.The different objects and postures used in the ex-

periment are shown in Fig. and Fig. respectively.

The instructions at the start of the experiment, as well as the caption for
each video, stated that participants should pay close attention to the robot’s
eyes in the video. After every two videos, the participants were asked to fill
out a questionnaire that collected subjective measures as detailed below. The
questionnaire was identical to the one used in our previous study (Section
and in Zheng et al.’s study [188]]. Questions 1 and 2 measure the metric likability
(Cronbach’s o = 0.83). Questions 3 and 4 measure the metric anthropomorphism

(Cronbach’s oo = 0.91). Question 5 measures the metric timing communication.

1) Which handover did you like better? (1st or 2nd)

2) Which handover seemed more friendly? (1st or 2nd)

3) Which handover seemed more natural? (1st or 2nd)

4) Which handover seemed more humanlike? (1st or 2nd)

5) Which handover made it easier to tell when, exactly, the robot wanted the
giver to give the object? (1st or 2nd)

6) Any other comments (optional)
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Table 6.3: Study Conditions (24 participants per condition).

a. Small Box

Condition 1: Object Size b. Large Box

a. Plastic Bottle
b. Glass Bottle

a. Sitting
b. Standing

Condition 2: Object Fragility

Condition 3: User’s Posture

Table 6.4: Six pairings of the three gaze patterns and their reverse order for each
object or posture. Each participant experienced two versions (a/b of a single
condition) of these pairings, for a total of 12 pairings.

First Handover \ Second Handover

hand-face face-hand-face
hand-face hand
face-hand-face hand
face-hand-face hand-face
hand hand-face
hand face-hand-face

Experiment Design

The experiment was designed as a between-within experiment, using likabil-
ity, anthropomorphism, and timing communication as the dependent variables.
The participants were divided into three groups of 24 participants. Each group
performed one of the three study conditions listed in Table The order of the

12 sessions was randomized and counterbalanced among the subjects.

Analysis

The participants’ ratings for the likability and anthropomorphism of the gaze
behaviors were measured by averaging their responses to Questions 1-2 and 3-

4 respectively. The one-sample Wilcoxon signed-rank test was used to check
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if participants exhibited any bias towards selecting the first or the second
handover. Similar to our previous studies (Section and Zheng et. al’s
work [188], the Bradley-Terry model [16] was used to evaluate participants’
rankings of the likeability, anthropomorphism, and timing communication of
gaze behaviors. To evaluate the hypothesis H1, i.e. P, # P;Vi # j, where P, is
the probability that one gaze condition is preferred over others, the x* values
for each metric were computed, as proposed by Yamaoka et. al [181]:

B=n) log(P,+P;)— Y ailogP, (6.1)

i<j i

x? = ng(g — 1)in2 — 2BIin10, (6.2)

where, g = 3 is the number of gaze behaviors, n is the number of participants,

a; is the sum of ratings in each row of Tables (Appendix).

In order to examine H2-H4, we conducted two series of tests for each mea-
sured metric (likability, anthropomorphism and timing communication), and

for each study scenario:

* Binary proportion difference tests for matched pairs [108], in which the
difference between the proportion of participants who chose one gaze con-
dition p, over other p. was evaluated in each study scenario. The distribu-

tion of differences p, — p. is:

— _ 2
Db — Pe ~ N(O, \/pb + De (pb pc) ) (63)

n

where n = 24 is the number of participants in each scenario. The z-score

is calculated according to the following formula:

var(py — pe)
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A low Z-score means that the distribution of differences has zero mean
with high probability.

¢ Equivalence tests based on McNemar’s test for matched proportions [109,
116], in which the proportion of participants who changed their gaze pref-

erences in each study scenario was compared within equivalence bounds

of A = £0.1.

Quantitative Results

To test for order effects, we checked, but did not find any bias towards selecting
the first or the second handover [like: z =-0.68, p = 0.50; friendly: z =1.22, p =
0.22; natural: z =0.20, p = 0.84; humanlike: z = 1.36, p = 0.17; timing communi-
cation: z =1.23, p = 0.22].

Tables[B.1]- B.3|(Appendix) and Fig.[6.8] show the robot gaze preferences

of the participants in terms of likability, anthropomorphism and timing commu-

nication.

Gaze conditions differ significantly in ratings (all x* values are large (p <
0.0001)), supporting H1. Participants prefer the Face-Hand-Face transition gazes

over Hand-Face and Hand gazes. Hand gaze is the least preferred condition.

Based on the binary proportion difference test, we did not find evidence
that the proportion of observers of a handover preferring one gaze condition
over the other is affected by object size (Table Appendix), object fragility
(Table Appendix) and user’s posture (Table Appendix). Hypotheses

H2, H3 and H4 are not supported (all p values are over 0.2).
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However, based on the equivalence tests, we did not find evidence that the
proportion of observers of a handover preferring one gaze condition over the
other is equivalent for the two object sizes (Table Appendix), object fragili-
ties (Table Appendix), or user’s postures (Table Appendix). Thus, hy-

potheses H2, H3 and H4 can also not be rejected (all p values are over 0.15).

Open-ended Responses

All open-ended responses are presented in [45] with major insights detailed be-

low.

10 out of 72 participants gave at least one additional comment. Four out
of the eight participants, who made Hand-Face gaze vs. Face-Hand-Face gaze
comparisons, preferred Face-Hand-Face gaze over Hand-Face gaze due to the ex-

tended eye contact by the robot.

P059 - “As much eye contact as possible.”
P048 - “I preferred handover 2 (Face-Hand-Face gaze) because the robot

looked more at the human”

Two participants mentioned that they could not distinguish between Face-Hand-
Face gaze and Hand-Face gaze, while two participants commented on the advan-

tages and disadvantages of the two gaze patterns.

P041 - “In handover 1 (Hand-Face gaze) you could tell that the robot was
ready to receive the object. However, handover 2 (Face-Hand-Face gaze) felt
more humanized because the robot looked at the giver’s eyes right until the

transfer was made.”
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Four out of six participants, who commented on the comparison between
Hand-Face gaze and Hand gaze, preferred Hand-Face gaze because of the eye

movement.

P0O08 - “In my opinion, the change in eye movement creates a better human-
robot interaction.”
P009 - “In the second handover (Hand-Face gaze) the eye movement, gave

a good indication for the communication.”

Two participants mentioned that they could not distinguish between Hand-

Face gaze and Hand gaze.

Six participants commented on Face-Hand-Face gaze vs. Hand gaze compari-

son. All of them said that they preferred Face-Hand-Face gaze over Hand gaze.

P009 - “At handover 2 (Face-Hand-Face gaze), the robot looked at the object
precisely when it wanted to take it, so it was perceived more understand-
able.”

P037 - “In my opinion video 2 (Face-Hand-Face gaze) best simulated

human-like behavior out of all the videos I have seen so far.”

6.4.5 In-person Study of Human-to-Robot Handovers

In the in-person study, another set of 72 participants was asked to perform object
handovers with the Sawyer robot arm in a similar setup (Figure [6.6(c)). The
robot arm and the robot eyes were programmed in the same way as the video

study described in Section[6.3.2]
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Experiment Procedure, Design and Evaluation

The experiment was conducted during the COVID-19 pandemic. Therefore,
several precautions were taken. The participants were asked to wash their
hands with soap when they entered and exited the lab. The equipment was
sterilized before and after each participant, and the experiment room’s door re-
mained open at all times. Only one participant was allowed at a time inside the
room. Both the participant and conductor of the experiment wore masks and

kept at least 2 meters distance between them.

After entering the experiment room, participants signed the electronic con-
sent form, and answered a question on a computer: How familiar are you with a
collaborative robot (such as the one shown)? Participants ranked this question on a
scale from 1 — “Not at all familiar” to 5 — “Extremely familiar”. The mean familiar-
ity with this type of robot was found to be low (M=1.49, SD = 0.60, on a scale of
1-5).

The study instructions were given orally by the experimenter. Participants
then completed a practice session followed by 12 randomly assigned study ses-
sions. In each session, the participants performed two sequential handovers
with the robot. The 12 sessions consisted of the same pairings of gaze behaviors
as in the video experiment, followed by the same questionnaire questions. The
only difference was in Question 5, which was “Which handover made it easier
to tell when, exactly, the robot wanted you to give the object? (1st or 2nd)”. The

experimental design was also the same as the video study.
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Analysis

The hypotheses H1-H4 were evaluated using the same procedure as described
in Section

To evaluate hypothesis H5, we conducted two series of tests for each measured
metric (likability, anthropomorphism, and timing communication), and for each
study scenario. These tests are different from the tests for “matched pairs”
which we performed for testing H2-H4, since for testing H5 we need to com-

pare two different participants” groups:

* Binary proportion difference tests for unmatched pairs [69], in which the
difference between the proportion of participants who chose one gaze con-
dition over the other in each study scenario for the in-person p, and video

p. studies was evaluated. The distribution for the differences p, — p. is:

Po — Pc ™~ N(0> \/Pd(l —Pd)(i - i) (6.5)

ny Ne
where n;, = 24 and n, = 24 are the number of participants in each scenario

of the in-person study and video study respectively, and p, is the pooled

proportion calculated as follows:

Xy + X,
pa= = (6.6)

ny + N

where X, and X, are the number of participants who preferred one gaze
condition over the other (shown in Tables - Appendix) in the in-

person and video study respectively. Then, the Z-score is calculated same
as Equation

¢ Equivalence tests for unmatched proportions [85], in which the proportion

of participants who chose one gaze condition over the other in each study
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scenario for the in-person p;, and video p. studies was tested for equiva-

lence within the bounds of A = 40.1.

Quantitative Results

There was no bias towards selecting the first or the second handover [like: z
=-0.88, p = 0.38; friendly: z = -0.27, p = 0.79; natural: z =-0.48, p = 0.63; human-
like: z = -1.16, p = 0.25; timing communication: z =0.34, p = 0.73]. Tables
(Appendix) and Fig. show the robot gaze preferences of the partici-
pants in terms of likability, anthropomorphism, and timing communication. In
all six experimental conditions, the gaze conditions differ significantly in ratings
(p < 0.0001), supporting H1. As in the video study, participants preferred the
Face-Hand-Face transition gazes over Hand-Face and Hand gazes. Hand gaze was

the least preferred (p < 0.0001).

Based on the binary proportion difference test, the proportion of participants
in a handover preferring one gaze condition over other can not be claimed to
be affected by object size (Table Appendix), object fragility (Table Ap-
pendix) and user’s posture (Table Appendix), contradicting hypotheses H2,
H3 and H4. The proportion of participants in a handover preferring one gaze

condition over other (Table|B.10} [B.11} [B.12) Appendix) also cannot be claimed to

be affected by the interaction modality (video or in-person), contradicting H5.

However, based on the equivalence tests, we did not find evidence that the
proportion of participants in a handover preferring one gaze condition over the
other is equivalent for the two object sizes (Table Appendix), object fragili-
ties (Table Appendix), or user’s postures (Table Appendix). Thus, hy-
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potheses H2, H3 and H4 can also not be rejected (all p values are over 0.15). We

also did not find evidence that the proportion of participants in a handover pre-

ferring one gaze condition over other (Table[B.10} B.11} B.12| Appendix) is equiv-

alent for the two interaction modalities (video or in-person). Thus hypothesis

HS5 can also not be rejected.

Open-ended Responses

14 out of 72 participants gave additional comments.

Seven participants made Hand-Face gaze vs. Face-Hand-Face gaze compar-
isons. Two of these participants stated that they preferred Face-Hand-Face over

Hand-Face gaze because they preferred longer eye contact from the robot.

P020 - “I preferred handover 1 (Face-Hand-Face gaze) because the robot
stared at me before and after the handover, and 1 felt accompanied by it

during the entire handover.”

Four participants mentioned that they could not distinguish between the two
conditions, while one participant mentioned that Face-Hand-Face gaze pattern

didn’t feel natural.

Four out of the seven participants who commented on the comparison be-

tween Hand-Face gaze and Hand gaze, said that they preferred Hand-Face gaze.

P014 - “In the first handover (Hand-Face gaze) the robot looked straight at
me after the handover and seemed to be more friendly.”

P050 - “In the first handover (Hand-Face gaze), the robot’s eye movement

162



was fully accompanied by the handover movement, and therefore it seemed

more natural.”

Three participants mentioned that they could not distinguish between Hand-

Face gaze and Hand gaze.

Seven out of eight participants, who commented on the comparison between
Face-Hand-Face gaze and Hand gaze gazes, said that they preferred Face-Hand-

Face gaze over Hand gaze because of the longer eye contact by the robot.

P014 - “In the first handover (Hand gaze), the robot focused only on the
object, and in the second handover (Face-Hand-Face gaze) it focused on me
too, so it felt more natural.”

P016 - “I preferred the second handover (Face-Hand-Face gaze) mainly be-

cause the robot looked me in the eyes at the beginning and the end.”

6.4.6 Discussion

Prior works studying robot gaze in handovers did so either for a robot as the
giver, or—in our prior studies on robot receiver gaze—for a small and rigid ob-
ject, and one specific posture of the human. However, for a robot receiver, the
object type or giver posture might influence preferences of robot gaze behavior.
This raises the question of whether the findings in the prior work generalize
over variations in the handover task. In this work, we investigated the effect of
different object types and giver postures on preferred robot gaze behavior in a
human-to-robot handover. We did not find evidence that the participants” gaze

preference for a robot receiver in a handover is affected by small, large, fragile,
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and non-fragile objects, standing or sitting postures, and the interaction modal-
ity i.e. video or in-person. However, in our study, the proportion of participants
preferring one gaze condition over the other is not statistically equivalent. Thus
we cannot completely reject the effect of these scenarios on gaze preferences. In
addition, previously we studied the robot receiver’s gaze behaviors only in the
reach phase of human-to-robot handovers. The studies presented in this sec-
tion extend the empirical evidence by studying the gaze patterns for all three

phases of the handover: reach, transfer, and retreat.

As in our previous study (Section [6.3), results revealed that the most pre-
ferred gaze behavior for a robot receiver was different from the observed most
frequent behavior of a human receiver. When a person receives an object from
another person, the most frequent gaze behavior is a Hand-Face gaze, in which
the receiver looks at the giver’s hand throughout the reach and transfer phases,
and then at the giver’s face in the retreat phase. This indicates that receivers
must keep their gaze focused on the task and thus sacrifice the social benefits
of the face gaze. Our previous studies had revealed that a robot receiver can
utilize the flexibility of its perception system to incorporate a face-oriented gaze
for social engagement. This finding is reinforced by our current study as the
participants preferred a Face-Hand-Face transition gaze behavior, in which, the
robot initially looked at their face, then transitioned its gaze to their hand dur-
ing the reach phase, continued to look at their hand during the transfer phase,
and finally transitioned its gaze back to again look at their face during the re-
treat phase. Open-ended responses suggested that people preferred the robot
looking at their face at the beginning and the end of the handover, and the
robot’s eyes following the object during the transfer phase. This gaze behav-

ior complemented the robot’s handover motion, and thus portrayed the robot
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as more human-like, natural, and friendly. Another possible explanation is that
the social aspects of a human receiver are implicit, whereas a robot has to estab-
lish its social agency for a better handover experience. Based on these findings,
we recommend to HRI designers to implement a Face-Hand-Face transition
gaze when the robot receives an object from a human, regardless of human

posture and characteristics of the object being handed over.

There are several limitations of this study that could motivate future work.
The results are limited by the sample size and the specific cultural and demo-
graphic makeup of its participants. Larger population samples of different age
groups, backgrounds, and cultures should be investigated to help generalize the
tindings of our experiments. Moreover, as with any experimental study, there is
a question of external validity. A handover that is part of a more complex col-
laborative or assistive task might elicit different expectations of the robot’s gaze,
a fact that should be considered by designers of HRI systems. To better under-
stand these contextual requirements, additional realistic scenarios of assistive

and collaborative tasks should be considered.
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I:nfrared sensor RObU t
i Table
Distance sensor Experimenter

(c)
Figure 6.6: Experimental Setup: Video frames of an actor handing over an ob-
ject to the robot, used in the video study: (a) “Standing” posture (b) “Sitting”
posture (c) Diagram of the setup for the in-person study.
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(b)

Figure 6.7: The objects used in the experiments: (a) Object size (small box and
large box), (b) Object fragility (plastic bottle and glass bottle)
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Figure 6.8: x? values and win-probabilities of gaze conditions in the video study
for the three dependent measures: (a) Small object , (b) Large object.
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Figure 6.9: x? values and win-probabilities of gaze conditions in the video study
for the three dependent measures: (a) Non-Fragile object, (b) Fragile object.
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Figure 6.10: x? values and win-probabilities of gaze conditions in the video
study for the three dependent measures: (a) Standing , (b) Sitting.
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Figure 6.11: x? values and win-probabilities of gaze conditions in the in-person
study for the three dependent measures: (a) Small object , (b) Large object.
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Figure 6.12: x? values and win-probabilities of gaze conditions in the in-person
study for the three dependent measures: (a) Non-Fragile object, (b) Fragile ob-

ject.
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Figure 6.13: x? values and win-probabilities of gaze conditions in the in-person
study for the three dependent measures: (a) Standing, (b) Sitting.
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CHAPTER 7
BIMANUAL HUMAN-HUMAN AND HUMAN-ROBOT HANDOVERS

7.1 Introduction

As described in Section 2.2]and Section a lot of prior work has focused on
single-handed human-human and human-robot object handovers. These stud-
ies have investigated different phases of handovers, such as approach [7, 90,
172}, 75], reach [156, 66} [76] 19, [18, [125], and transfer [42, 123} 124} 57]. Many
researchers have also studied the handover location and orientation in human-
human handovers [7, 58| [71} 72, 34]. However, there is very little work on bi-
manual handovers, i.e. handovers of objects requiring two-handed grasps (Sec-
tion [2.6), even though they are equally important and challenging. We seek to

address this knowledge gap by investigating bimanual handovers.

First, we create a multi-sensor dataset of human-to-human bimanual han-
dovers. Existing datasets of human-to-human handovers [25] 28| [183] have
studied handovers of objects with single-handed grasps i.e. uni-manual han-
dovers. To the best of our knowledge, there is no prior public dataset of bi-
manual handovers. Our dataset contains 240 recordings collected from 24 vol-
unteers performing bimanual handovers with 10 objects. We also include 120
recordings from the same volunteers performing unimanual handovers with 5
of those objects. These can be used to compare the characteristics of unimanual
and bimanual handovers of the same object. Each recording consists of the posi-
tions and orientations of 13 upper-body bones for each participant, the positions
of 27 upper-body bone markers for each participant, the position/orientation of

the object, and two RGB-D data streams. The recordings are annotated with the
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three handover phases: reach, transfer, and retreat. The dataset also includes

the height, weight, arm span, and waistline height of the participants.

Second, we create a multi-sensor dataset of human-human handovers in a
shelving /unshelving task that requires multiple sequential handovers. Existing
datasets of human-to-human handovers [25, 28, [183] have studied isolated han-
dovers, whereas several real-life tasks require multiple sequential handovers.
These handovers can be of different types: unimanual, bimanual, and even,
self-handovers performed to adjust grasps. To the best of our knowledge, there
is no public dataset of multiple sequential handovers. Our dataset contains 48
recordings of handovers with 30 objects (total of 1440 handovers) collected from
24 volunteers. Each recording consists of the positions and orientations of 13
upper-body bones for each participant, the positions of 27 upper-body bone
markers for each participant, and two RGB-D data streams. The dataset also

includes the height, weight, arm span, and waistline height of the participants.

Third, we explore the application of Bayesian Interaction Primitives
(BIP) [22], an imitation learning technique, to train a humanoid robot to per-
form human-like bimanual reaching motions in handovers. BIPs have been
used to train a robot for human-robot interaction tasks from human demon-
strations. However, the previous evaluations did not involve tasks with coordi-
nation constraints on the robot’s motion, whereas a bimanual reaching motion
requires coordinated movement, both in space and in time, of both arms. Our
evaluations reveal that the BIPs, in their existing formulation, do not work for
generating a coordinated bi-manual reaching motion. We discuss some possible

solutions to modify BIPs for bimanual human-robot handovers.
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7.2 Multi-sensor Dataset of Bimanual Human-Human Han-
dovers
We conducted a user study to create a multi-sensor dataset of bimanual human-

to-human handovers (example shown in Fig [7.1). This section describes the

study protocol and data collection process.

s W) 2
e 0 Lo

L -

=

Figure 7.1: Example of a Bimanual Handover

7.2.1 Study setup

Our experiment setup, shown in Fig. consisted of an OptiTrack motion
tracking system with 12 Flex-13 cameras, and two Kinect v2 sensors. The area

was surrounded by green screens to make it easier for other researchers to do
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Figure 7.2: Schematic of the data collection setup of the bimanual handovers
dataset. We used an OptiTrack motion tracking system with 12 cameras (red
squares), and two Kinect v2 sensors (black triangles). The green and blue cir-
cles represent the positions of the participants. The reference frame in the figure
shows the reference frame of the motion tracking system whose origin was on
the floor and behind the participant shown with the green circle. The partic-
ipants were instructed to stand along the x-axis of this reference frame, at an
interpersonal distance that is comfortable to them.

post-processing on the video recordings in the future.
Motion Tracking Data

The OptiTrack cameras were connected to a desktop computer (CPU: Intel Core
15-7600 3.5GHz, GPU: 2GB AMD Radeon T R5 430 and 4 GB Intel HD Graphics
630, RAM: 8GB, running Windows 10 Pro) which recorded the skeleton tracking
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data through OptiTrack’s Motive software. To track the participants’” motion
in bimanual handovers, we used the “Conventional Upper Body” marker set
consisting of 27 reflective markers placed at the positions shown in Fig.
Along with the 3D positions of these 27 markers, Motive also computes—from

the marker positions—the 3D position and orientation of 13 upper-body bones

shown in Fig.
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LSHO C'7 RSHO

RBAK
RUPA CLAV uPA LuPA . T10 * _RUPA
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LFRA | LPSI RPSI . RFRA

'RFIN

LFIN LFIN

Figure 7.3: Names of bone markers in the “Conventional Upper Body” skeleton

We also recorded the position and orientation of the object being handed
over with a rigid body marker set consisting of 6 reflective markers. The motion

tracking data was recorded at 120Hz.

Kinect Sensor Data

The first Kinect v2 sensor (K1 in Fig. was connected to a desktop com-
puter (CPU: Intel Core i7-6700 3.4GHz, RAM: 16GB, GPU: 4GB NVIDIA Quadro
P1000, running Windows 10 Pro) which recorded the data streams from the
Kinect sensor in the Microsoft Kinect Studio software. The second Kinect v2

sensor (K2 in Fig. was connected to a laptop (CPU: Intel Core i7-7700HQ
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Figure 7.4: Names of bones in the “Conventional Upper Body” skeleton

2.8GHz, RAM: 16GB, GPU: 4GB NVIDIA GeForce GTX 1050 and 8GB Intel HD
Graphics 630, running Windows 10 Home) which recorded the data streams
from the Kinect sensor in the Microsoft Kinect Studio software. The Kinect V2
provides RGB-D streams in the following format: RGB - Resolution of 1920 x
1080, frame rate of 30 frames per second, which is the maximum allowed. If the
light is low, the sensor changes to 15 frames per second to allow in more light
for better exposure. D - Resolution of 512 x 424, frame rate of 30 frames per

second.
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7.2.2 Objects

We used 10 objects of different shapes, sizes, rigidity, and fragility, as shown in

Table[7.1]and Figure[7.5] in the study.

Table 7.1: Characteristics of objects used in the bimanual handovers dataset. D:
Diameter, H: Height

# Name Geometry Size (mm) Weight (kg) Rigidity  Fragility
1  FlowerPot Cylinder 153D,112H  0.60 Hard Fragile

2 Dishes Cylinder 250D, 80 H 1.61 Hard Fragile

3 Laptop Cuboid 342x240x25 1.36 Hard Fragile

4  PlushToy  Cylinder 380D,150 H  0.35  DeformableNon-fragile
5 Wifi Router  Cuboid 200x173x45 0.38 Hard Fragile

6  Basketball  Spherical 240D 0.60 Hard Non-fragile
7 Folded Clothes Cuboid 420x300x70 1.04  DeformableNon-fragile
8 Cardboard Box Cuboid 400x390x280  1.16 Hard Non-fragile
9 Cardboard Plank Cuboid 560x355x15 0.21 Hard  Non-fragile

10 Backpack Cuboid 460x395x35 1.30  DeformableNon-fragile

Figure 7.5: Objects used in the bimanual handovers dataset
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7.2.3 Study protocol

After entering the room containing the recording setup, participants signed the
consent form and wore the motion capture suits. The experimenter calibrated
the skeletons in the Motive software for each participant. Then the participants
performed a shelving/unshelving task (for the sequential handovers dataset
described in Section [7.3), followed by both unimanual (right-handed) and bi-
manual handovers of 5 objects shown in Fig. [7.5/ (top row) and only bimanual
handovers of 5 objects shown in Fig. [7.5/ (bottom row). They performed these
handovers standing face-to-face. They were instructed to stand along the x-axis
of the reference frame of the motion tracking system (see Fig.[7.2), at an interper-
sonal distance that is comfortable to them. Finally, the experimenter measured

the height, weight, arm span, and waistline height of the participants.

7.2.4 Participants

A total of 30 volunteers (15 pairs) participated in our study. Out of these, the
first three pairs, six participants, were pilot trials. Each study session took ap-
proximately 30 minutes, and the participants were compensated with $5 for

participation.

7.2.5 Data Processing and Annotations

We used the KinectXEFToold] library to extract the RGB videos in “.avi’ for-

mat from the raw Kinect recordings which were in “.xef” format. We used the

https://github.com/Isaac-W/KinectXEFTools
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Kinect2Mat] library to extract the depth data in “.mat’ format from the raw
Kinect recordings. We split the data recordings of each study session into in-
dividual handovers manually. The data from the two Kinect sensors and the
OptiTrack system was recorded on three separate computers. To help synchro-
nize the three data streams during post-processing, we had asked participants
to stand in a “T-pose” at the beginning of each study session. We used the times-
tamps of this event to synchronize the data recordings of the two Kinect sensors
and the OptiTrack system. From the OptiTrack Motive software, we also ex-
ported the Quaternion orientations of 13 upper-body bones for each participant

with respect to their parental segment, roughly representing the joint angles.

We annotated each frame of the data recordings with the three phases of
a handover: reach, transfer, and retreat. The “reach” phase corresponds to the
reaching motion of the giver and receiver before the receiver makes contact with
the object. “Transfer” starts when both the giver and receiver touch the object
for the first time, and ends when the giver releases the object. In the “retreat”
phase, the giver and receiver retract their hands to the resting position. In our
annotations, the “transfer” phase corresponds to the portion of the handover
where the distance between the giver’s and receiver’s hands is within 20cm of
the minimum distance, and their relative velocity is less than 15cm/s. These

thresholds were obtained with trial-and-error.

https://github.com/raysworld/Xef2Mat
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7.3 Multi-sensor Dataset of Sequential Handovers

We conducted a user study to create a multi-sensor dataset of sequential human-
human handovers. This section describes the study protocol and data collection

process.

7.3.1 Study setup

We used a similar setup as the one described in Section [7.2.1} with the addition
of two tables and a shelf as shown in Fig. Our study involved two types of
tasks requiring sequential handovers: shelving and un-shelving. In the “shelv-
ing task”, the giver picked up objects from the tables and handed them to the
receiver who placed the objects on the shelf. In the “un-shelving task” the giver
picked up objects from the shelf and handed them to the receiver who placed

the objects on the tables.

Figure 7.6: Example of a handover in the shelving task
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Figure 7.7: Schematic of the data collection setup of the multiple sequential han-
dovers dataset. We used an OptiTrack motion tracking system with 12 cameras
(red squares), and two Kinect v2 sensors (black triangles). The green and blue
circles represent the positions of the participants. The brown rectangles repre-
sent two tables and the gray rectangle represents the shelf. The reference frame
in the figure shows the reference frame of the motion tracking system whose ori-
gin was on the floor and in front of the shelf. The participants were instructed to
stand along the x-axis of this reference frame, at an interpersonal distance that
is comfortable to them.

7.3.2 Objects

We used 30 objects of different shapes, sizes, rigidity, and fragility, as shown in

Table[7.2]and Figure[7.8] in the study.
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Table 7.2: Characteristics of objects used in the sequential handovers dataset.

# Name Geometry Size (mm) Weight (kg) Rigidity  Fragility

1 Flower Pot  Cylinder 153 D, 112 H 0.60 Hard Fragile

2 Dishes Cylinder 250 D, 80 H 1.61 Hard Fragile

3 Laptop Cuboid 342x240x25 1.36 Hard Fragile

4  PlushToy  Cylinder 380D,150 H  0.35  DeformableNon-fragile
5 Wifi Router = Cuboid 200x173x45 0.38 Hard Fragile

6  Basketball = Spherical 240D 0.60 Hard  Non-fragile
7 Folded Clothes Cuboid 420x300x70 1.04  DeformableNon-fragile
8 Box (L) Cuboid 400x390x280 1.16 Hard Non-fragile
9 Cardboard Plank Cuboid 560x355x15 0.21 Hard Non-fragile
10 Backpack Cuboid 460x395x35 1.30  DeformableNon-fragile
11 Football Spherical 220D 0.41 Hard Non-fragile
12 Box (M) Cuboid 285x220x145 0.19 Hard Non-fragile
13 Storagebox  Cuboid 405x270x185  1.27 Hard  Non-fragile
14 Salad Bowl Spherical 153D, 75 H 0.52 Hard Fragile
15 Umbrella Cylinder 70D, 410 H 0.30 Hard Non-fragile
16 Textbook Cuboid 260x210x60 1.28 Hard  Non-fragile
17 Laptop Charger Cuboid 210x80x75* 0.61  DeformableNon-fragile
18 Mobile Charger Cuboid 120x45x30* 0.07  DeformableNon-fragile
19 Wooden plank Cuboid 610x450x10 0.88 Hard Non-fragile
20 Spray Bottle Cylinder 85D, 295 H 1.04 Hard Non-fragile
21 Water Bottle Cylinder 80 D,270 H 1.04 Hard  Non-fragile
22 Mug Cylinder 120D, 85 H 0.48 Hard Fragile
23 Stack of papers Cuboid 279x215x10 0.17  DeformableNon-fragile
24 Wrench Cuboid  300x70x12 0.83 Hard Non-fragile
25  Cloth bag Cuboid  450x450x5 0.05  DeformableNon-fragile
26 Glass Vase  Cylinder 127D, 232 H  0.82 Hard Fragile
27 Keyboard Cuboid 450x155x30 0.54 Hard  Non-fragile
28 Clamp Cuboid 300x155x13 0.26 Hard Non-fragile
29 Tape Cylinder 80D, 46 H 0.02 Hard Non-fragile
30  Paper roll Cylinder 190 D,200H  1.75 Hard Non-fragile

* in wrapped configuration, D: Diameter, H: Height

7.3.3 Study protocol

After entering the room containing the recording setup, participants signed the

consent form and wore the motion capture suits. The experimenter calibrated

the skeletons in the Motive software for each participant. Then the participants
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Figure 7.8: Objects used in the sequential handovers dataset

performed the shelving/unshelving tasks in the following sequence: shelving
task (P1 giver, P2 receiver), unshelving task (P2 giver, P1 receiver), shelving
task (P2 giver, P1 receiver), unshelving task (P1 giver, P2 receiver). In each
shelving task, the giver was instructed to stay close to the tables and the receiver
was instructed to stay close to the shelf. In each unshelving task, the giver was
instructed to stay close to the shelf and the receiver was instructed to stay close
to the tables. The participants were instructed to hand over one object at a time,
but they were not given any specific instructions about the type of handovers
or the sequence of objects or the arrangement of objects on the shelf/on the
table. After finishing the shelving/unshelving tasks, participants performed
the second part of the study described in Section[7.2.3]
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7.3.4 Data Processing and Annotations

We used the KinectXEFToold| library to extract the RGB videos in “.avi’ for-
mat from the raw Kinect recordings which were in “.xef” format. We used the
Kinect2Maf] library to extract the depth data in “.mat’ format from the raw
Kinect recordings. We split the data recordings of each study session into in-
dividual shelving/unshelving tasks manually. The data from the two Kinect
sensors and the OptiTrack system was recorded on three separate computers. To
help synchronize the three data streams during post-processing, we had asked
participants to stand in a “T-pose” at the beginning of each shelving /unshelving
task. We used the timestamps of this event to synchronize the data recordings
of the two Kinect sensors and the OptiTrack system. From the OptiTrack Motive
software, we also exported the Quaternion orientations of 13 upper-body bones
for each participant with respect to their parental segment, roughly representing

the joint angles.

7.4 Controller for Humanlike Reaching Motion in Bimanual

Handovers

There is very little work on robot controllers for two-handed human-robot han-
dovers [12, 159, [149| 59]. Also in these works, the robot’s reaching motion is
not human-like, which is required for humanoid robots. For single-handed
handovers, several researchers have proposed robot controllers for human-like

reaching motions [132, 133, [100, 101} 84} 147, 110, 157, 180, (186, [182] (See “Con-

Shttps://github.com/Isaac-W/KinectXEFTools
4https://github.com/raysworld/Xef2Mat
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trollers Learned from Demonstrations or Feedback” in Section [2.5.2). But, to
the best of our knowledge, there is no prior work on human-like two-handed
handovers. We seek to address this gap by developing a robot controller for

generating human-like robot reaching motions in bimanual handovers.

For generating human-like single-handed handovers, researchers have used
motion primitives such as Dynamic Movement Primitives (DMPs) [132, 133],
Probabilistic Movement Primitives (ProMPs) [100, [101], Triadic Interaction
Meshes (IMs) [169], and Bayesian Interaction Primitives (BIPs) [22] 23, 24].
While DMPs and IMs can only utilize single demonstrations, IMs and BIPs use
probabilistic methods to learn from multiple demonstrations and are thus more
generalizable. BIPs are computationally more efficient than IMs [22] because
IMs use computationally demanding Dynamic Time Warping (DTW) to esti-
mate the current phase (i.e. time-step) of the interaction whereas BIPs couple
the estimation of phase and state using techniques from the field of Simultane-
ous Localization and Mapping (SLAM). Therefore, we select BIPs to teach a hu-

manoid robot to perform humanlike bimanual reaching motions in handovers.

7.4.1 Bayesian Interaction Primitives

BIPs are a human-robot interaction framework that focuses on extracting a prob-
abilistic model of interaction dynamics as presented in a set of example demon-
strations. Here we provide a conceptual overview of the BIPs and refer the
reader to [21] for a detailed description and the mathematical formulation of
BIPs. In the training phase of BIPs, demonstrations of the interaction, which

consist of observations over time for each measured degree of freedom (DoF),
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are decomposed into a linear combination of nonlinear basis functions. The
coefficients of these basis functions, which represent the latent state of an inter-
action, are used to construct a prior in the form of a joint probability distribution
of all DoFs. In the testing phase, this prior distribution is updated based on the
sequence of observations from a subset of DoFs. This update step involves si-
multaneously inferring both the spatial state of the interaction (the latent state)
and the temporal state (the phase). The posterior distribution can be used to
infer future states of any DoF in the model, and also to generate control trajec-

tories for the robot.

7.4.2 Learning Bimanual Handovers with BIPs

We use the IntPrims libraryP| developed by Campbell et al. to evaluate BIPs
for bimanual handovers. We focus on the reaching phase of a robot-to-human
handover in which the robot needs to carry the object in both hands toward the
human. Thus the robot needs to maintain a fixed distance between its hands,
equal to the grip width of the object while generating a human-like reaching

motion.

We use the human-human bimanual handovers data collected in our previ-
ous study |7.2| to train the BIPs. For the initial evaluation, we only consider the
Cartesian trajectories of the giver’s and receiver’s left and right wrists, during
8 object handovers of one pair of participants. We also include the grip width
of each object as a state variable. Fig.[7.9 shows the trained distributions. The
black line indicates the mean of each degree of freedom and the shaded blue

region represents one standard deviation.

Shttps://github.com/ir-lab/intprim
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Figure 7.9: Distributions of training trajectories (continued on next page).
RWRA: Right Wrist, LIWRA: Left Wrist

We evaluate the trained BIPs on the reach-to-handover trajectories of a new
object for the same pair of participants used for training the BIPs. Fig.
shows the distance between the left and right wrists of the giver: the green
curve shows the mean distance in the training trajectories, the blue curve shows

the distance in the observed test samples (10 timesteps), and the red dotted
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Figure 7.9: Distributions of training trajectories (continued from previous page).
RWRA: Right Wrist, LIWRA: Left Wrist
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Figure 7.10: Distance between the left and right wrists of the giver

curve shows the distance in the predictions of BIPs. We find that the predictions
of BIPs stay around the mean, whereas the observed distance is less than the
mean. The observed distance corresponds to the actual grip width of the test
object. Thus, if the predictions of BIPs are used to generate controls for a robot

giver, the object will slip from the robot’s hands.

7.5 Constraining Bayesian Interaction Primitives

The existing formulation of BIPs [22] does not involve adaptations to any joint
or Cartesian space constraints, such as maintaining the object grip width in a
bimanual handover. Here, we briefly discuss two possible solutions that can
be explored to impose the bimanual grip width constraint in BIPs. The first
solution involves updating the trained distributions of BIPs to satisfy the grip

width constraint, and the second solution involves imposing this constraint dur-
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ing the inference process. The first solution is similar to the method proposed
by Frank et al. [52] for adapting ProMPs to joint/Cartesian constraints. They
formulate adaptation as a constrained minimization problem, to minimize the
Kullback-Leibler divergence between the adapted distribution and the distri-
bution of the original primitive while adhering to the constraints. The second
solution is to impose the constraint in the spatiotemporal filters that are used

in BIPs for inference, for example, by utilizing constrained Ensemble Kalman

methods [2].
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CHAPTER 8
CONCLUSION

People frequently perform object handovers with each other, and robots will be
expected to perform such handovers with people, both at work and home. Tasks
such as collaborative assembly, surgical assistance, shelving in warehouses, and
elderly care require a robot to receive objects from and/or give objects to a hu-
man. We presented three directions of research related to the collaborative task
of object handovers. First, we developed robot controllers to address four pre-
viously unexplored scenarios of human-robot handovers. Second, we inves-
tigated a robot receiver’s gaze in human-to-robot handovers. Third, we cre-
ated two datasets of bimanual and sequential human-human handovers that

can provide new insights into human behavior in handovers.

In the first research direction, we tried to tackle the challenge of designing
robot controllers to address previously unexplored scenarios of human-robot
handovers. First, we proposed and evaluated two robot controllers for single-
handed handovers that allow users to specify intuitive controller parameters,
and also provide feedback in case of failure. Second, we presented a robot
controller for handovers that uses automated synthesis from formal specifica-
tions, a framework to unify different strategies for object handovers. Third, we
evaluated a reinforcement learning technique called Guided Policy Search for
training a robot to perform reach-to-handover motions, without requiring prior
knowledge of the robot’s dynamics. Finally, we evaluated an imitation learning
technique called Bayesian Interaction Primitives for training a robot to perform
human-like bimanual reach-to-handover motions, a desirable feature for hu-

manoid robots. Each of our controllers has some unique features, as compared
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to the features of the existing handover controllers, and developing a single con-

troller that has all these features is still an open challenge.

Our second research direction investigated human preferences for a robot’s
gaze behaviors when it is receiving an object from a human. We conducted
four studies to compare human-inspired robot gaze behaviors in human-to-
robot handovers. We also contributed to the literature on non-verbal gestures
in human-human interactions, by annotating a large public dataset of human-
human handovers with the giver and receiver’s gaze locations. Our findings
could be useful for designing non-verbal behaviors of a collaborative robot
when it takes on the role of a receiver in a handover. Our studies were limited
to isolated handovers, a common limitation of prior studies as well, whereas,
many real-world tasks require multiple sequential handovers. Future work can
explore the design of robot gaze behaviors in more realistic collaborative or as-

sistive scenarios.

Finally, we developed two datasets of human-human handovers, one for
bimanual handovers and one for sequential handovers, two scenarios that have
not been investigated in the existing datasets of human-human handovers. Our
datasets could help in developing human motion models and robot controllers

for bimanual and sequential object handovers.
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APPENDIX A
SUPPLEMENTARY MATERIALS FOR “TIMING-SPECIFIED
CONTROLLERS WITH FEEDBACK FOR HUMAN-ROBOT
HANDOVERS”

Tables show the Pearson’s correlation scores for the User Experience
Variables “Efficiency, “Perspicuity” and “Dependability”, and NASA TLX Vari-
ables “Mental Demand”, “Performance”, “Effort” and “Frustration”, for the PV

and MCJ controllers in Study 1.

Table A.1: Person’s correlation scores for the User Experience variables and
NASA TLX variables for PV Controller in Study-1, Round-1

NASA TLX Variable  UE Variable Pearson’s r )
Mental Demand Efficiency -0.243 0.196
Mental Demand Perspicuity -0.403 0.027
Mental Demand  Dependability -0.371 0.043

Performance Efficiency 0.395 0.031
Performance Perspicuity 0.251 0.180
Performance Dependability 0.527 0.003
Effort Efficiency -0.325 0.080
Effort Perspicuity -0.402 0.028
Effort Dependability -0.476 0.008
Frustration Efficiency -0.583 <.001
Frustration Perspicuity -0.598 <.001
Frustration Dependability -0.671 <.001
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Table A.2: Person’s correlation scores for the User Experience variables and
NASA TLX variables for PV Controller in Study-1, Round-2

NASA TLX Variable  UE Variable Pearson’s r p
Mental Demand Efficiency -0.384 0.036
Mental Demand Perspicuity -0.530 0.003
Mental Demand  Dependability -0.486 0.006

Performance Efficiency 0.445 0.014
Performance Perspicuity 0.533 0.002
Performance Dependability 0.604 <.001
Effort Efficiency -0.380 0.038
Effort Perspicuity -0.526 0.003
Effort Dependability -0.446 0.014
Frustration Efficiency -0.511 0.004
Frustration Perspicuity -0.512 0.004
Frustration Dependability -0.496 0.005

Table A.3: Person’s correlation scores for the User Experience variables and
NASA TLX variables for MCJ Controller in Study-1, Round-1

NASA TLX Variable  UE Variable Pearson’sr p
Mental Demand Efficiency -0.347 0.060
Mental Demand Perspicuity -0.739 <.001
Mental Demand  Dependability -0.444 0.014

Performance Efficiency 0.447 0.013
Performance Perspicuity 0.367 0.046
Performance Dependability 0.461 0.010
Effort Efficiency -0.494 0.006
Effort Perspicuity -0.651 <.001
Effort Dependability -0.568 0.001
Frustration Efficiency -0.498 0.005
Frustration Perspicuity -0.560 0.001
Frustration Dependability -0.545 0.002
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Table A.4: Person’s correlation scores for the User Experience variables and
NASA TLX variables for MCJ Controller in Study-1, Round-2

NASA TLX Variable  UE Variable Pearson’sr p

Mental Demand Efficiency -0.464 0.010
Mental Demand Perspicuity -0.553 0.002
Mental Demand  Dependability -0.286 0.126
Performance Efficiency 0.046 0.810
Performance Perspicuity 0.295 0.114
Performance Dependability 0.527 0.003
Effort Efficiency -0.407 0.026
Effort Perspicuity -0.355 0.055
Effort Dependability -0.188 0.320
Frustration Efficiency -0.383 0.036
Frustration Perspicuity -0.212 0.262
Frustration Dependability -0.426 0.019
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APPENDIX B
SUPPLEMENTARY MATERIALS FOR “ROBOT GAZE IN
HUMAN-TO-ROBOT HANDOVERS”

Tables - show the robot gaze preferences of the participants in terms
of Likability, Anthropomorphism and Timing Communication. The values in
the first three columns indicate the number of “wins” of a row condition over a
column condition i.e. the number of participants who preferred a row condition
over a column condition. For example, in Table |B.1|a Likability rating of 21 in
the small object, “HF” row and “H” column shows that 21 participants liked the
Hand-Face gaze over the Hand gaze. We obtained these ratings by averaging the
participants’ responses for both ordered pairwise comparisons, and thus some
of these values are fractions. The values in the a; column show the sum of the
ratings for each row. The probability that a row condition is preferred over other
conditions was calculated using an iterative estimation algorithm [67] and the

probability values are shown in the P, column.

Tables show the results of binary proportion difference tests and
equivalence tests for matched pairs which we used to evaluate H2-H4. We eval-
uated the user’s preferred gaze behavior in terms of Likability, Anthropomor-
phism, and Timing Communication for different study conditions. The values
in the “Z-score” column represent the test statistic. For example, in Table a
Z-score of 0.00 and a P-value of 0.5 for Likability in Hand-Face vs. Hand gaze con-
ditions means that the proportion of participants in the video study who liked
Hand-Face over Hand condition for both small and large object is not statistically
different. However, for the same scenario, a Z-score of -0.92 and a P-value of

0.18 for the Equivalence Test indicate that the proportions are not statistically
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equivalent as well.

Table B.1: Combined preferences of gaze behaviors in the video study for the
small and large object conditions. HF: Hand-Face Gaze, FHF: Face-Hand-Face
Gaze, H: Hand Gaze, L: Likability, A: Anthropomorphism, TC: Timing Commu-
nication

Small Object Large Object
HF FHF H a; P, | HF FHF H a; P,

HF 0 525 21 2625 0.2 0 575 21 2675 0.25
L FHF 1875 0 235 4225 0.771825 0 21 39.25 0.70
H 3 0.5 0 35 003] 3 3 0 6 0.05

HF 0 5 205 255 021 O 775 205 2825 0.28
A FHF| 19 0 225 415 0775|1625 0 2075 37 0.65
H 35 15 0 5 004 35 325 O 6.75 0.07

HF 0 75 19 265 029 O 6 20 26 031
TC FHF| 165 0 215 38 0.63| 18 0 175 355 0.57
H 5 2.5 0 75 008 | 4 6.5 0 10.5 0.12

Table B.2: Combined preferences of gaze behaviors in the video study for the
non-fragile object and fragile object conditions. HF: Hand-Face Gaze, FHEF:
Face-Hand-Face Gaze, H: Hand Gaze, L: Likability, A: Anthropomorphism, TC:
Timing Communication

Non-Fragile Object Fragile Object
HF FHF H a; P, | HF FHF H a; P

HF 0 625 195 2575 027 0 725 21 2825 0.32
L FHF|1775 0 205 3825 0.65|16.75 O 21 37.75 0.62
H 45 35 0 8 008] 3 3 0 6 0.06

HF 0 18.25 2425 027| O 75 195 27 032
A FHF| 18 19 37 062 | 16.5 0 19.75 36.25 0.59
H 5.75 0 1075 011| 45 425 0 8.75 0.09

TC FHF | 17 17 34 053|165 0 17 335 0.52
H 4.5 0 11.5 013| 45 7 0 11.5 0.13

6
0
5
HF 0 7 195 265 034] 0 75 195 27 035
0
7
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Table B.3: Combined preferences of gaze behaviors in the video study for the
standing and sitting conditions. HF: Hand-Face Gaze, FHF: Face-Hand-Face
Gaze, H: Hand Gaze, L: Likability, A: Anthropomorphism, TC: Timing Commu-
nication

Standing Sitting
HF FHF H a; P, | HF FHF H a; P;

HF 0 45 21 255 023 0 825 1975 28 0.35
L FHF| 195 0 21 405 0.72]1575 O 19.5 3525 0.55
H 3 3 0 6 005|425 45 0 8.75 0.10

HF 0 725 205 2775 033 0 925 19 2825 0.37
A FHF|1675 0 1975 365 0591475 0 1825 33 0.50
H 35 425 0 775 008| 5 575 0 1075 0.13

HF 0 65 20 265 031| O 7.5 18 255 0.30
TC FHF| 175 0 19 365 060 165 O 195 36 0.59
H 4 5 0 9 009 5 4.5 0 9 011

Table B.4: Combined preferences of gaze behaviors in the in-person study for
the small and large object conditions. HF: Hand-Face Gaze, FHF: Face-Hand-
Face Gaze, H: Hand Gaze, L: Likability, A: Anthropomorphism, TC: Timing
Communication

Small Object Large Object
HF FHF H a; P, | HF FHF H a; P,

HF 0 6.5 2075 2725 029| O 725 20 2725 031
L FHF|175 0 2075 3825 0641675 0 2075 375 0.62
H 325 3.25 0 65 007 4 325 0 725 0.07

HF 0O 65 21 275 03 0 75 19 265 0.229
A FHF|175 0 20.75 3825 064 | 165 0 2125 37.75 0.63
H 3 325 0 625 006, 5 275 0 7.75 0.08

HF o 75 22 295 037 O 85 185 27 034
TC FHF |165 O 19 355 055| 155 0 19 345 054
H 2 5 0 7 008 | 55 5 0 10.5 0.12
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Table B.5: Combined preferences of gaze behaviors in the in-person study for
the non-fragile object and fragile object conditions. HF: Hand-Face Gaze, FHF:
Face-Hand-Face Gaze, H: Hand Gaze, L: Likability, A: Anthropomorphism, TC:
Timing Communication

Non-Fragile Object Fragile Object
HF FHF H a; P, | HF FHF H a; P,

HF 0 575 22 2775 024| O 8 225 305 036
L FHF|1825 O 23 4125 0.73| 16 0 2125 37.25 0.59
H 2 1 0 3 00315 275 O 425 0.05

HF 0 625 2225 285 027 O 8 21.75 29.75 0.34
A FHF |1775 0 2275 405 0.70] 16 0 215 375 0.1
H 1.75 125 0 3 003]225 25 0 475 0.05

HF 0 8§ 215 295 036| O 9 21 30 040
TC FHF | 16 0 20 36 057 15 0 18,5 33.5 0.50
H 2.5 4 0 65 007 3 55 0 8.5 0.10

Table B.6: Combined preferences of gaze behaviors in the in-person study for
the standing and sitting conditions. HF: Hand-Face Gaze, FHF: Face-Hand-Face
Gaze, H: Hand Gaze, L: Likability, A: Anthropomorphism, TC: Timing Commu-
nication

Standing Sitting
HF FHF H a; P, | HF FHF H a; P,

HF 0 75 175 25 031 0O 675 1875 255 0.28
L FHF | 165 0 1775 3425 0541725 O 20 37.25 0.62
H 6.5 6.25 0 1275 015|525 4 0 9.25 0.10

HF 0 825 165 2475 031] O 75 17.75 2525 0.28
A FHF |1575 0 18 3375 053|165 0 205 37 0.62
H 7.5 0 13.5 0.16| 625 35 0 9.75 0.10

6
HF 0 9 18 27 035 0 6.5 19 255 0.31
TC FHF | 15 0 185 335 052|175 0 18 355 0.57
H 6 5.5 0 11.5 013| 5 6 0 11 0.12
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Table B.7: Results of binary proportion difference test and equivalence test for
matched pairs comparing small object and large object user’s preferences of
robot gaze in handovers. Gaze condition in bold is the preferred choice in
each pairwise comparison. HF: Hand-Face Gaze, FHF: Face-Hand-Face Gaze,
H: Hand Gaze, L: Likability, A: Anthropomorphism, TC: Timing Communica-
tion, BPDT: Binary Proportion Difference Test, ET: Equivalence Test.
BPDT ET
Z score P-value Zscore P-value
HF vs. FHF -0.15 0.44 0.39 0.35

Metrics Gaze Conditions

L HF vs. H 0.00 0.50 -0.92 0.18

FHF vs. H 0.38 0.36 0.19 0.58

HF vs. FHF -0.78 0.22 0.31 0.38

Video A HF vs. H 0.00 0.50 0.80 0.21
FHF vs. H 0.27 0.40 -0.32 0.38

HF vs. FHF 0.41 0.34 -0.75 0.23

TC HF vs. H -0.16 0.44 -0.25 0.60

FHF vs. H 0.65 0.26 0.04 0.52

HF vs. FHF -0.20 0.42 0.51 0.30

L HF vs. H 0.12 0.45 0.45 0.33

FHF vs. H 0.00 0.50 0.96 0.17

HF vs. FHF -0.27 0.40 0.59 0.28

In-Person A HF vs. H 0.32 0.38 0.06 0.47
FHF vs. H -0.08 0.47 0.27 0.39

HF vs. FHF -0.25 0.40 0.27 0.39

TC HF vs. H 0.55 0.29 0.36 0.36

FHF vs. H 0.00 0.50 0.30 0.38
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Table B.8: Results of binary proportion difference test and equivalence test for
matched pairs comparing fragile object and non-fragile object user’s preferences
of robot gaze in handovers. Gaze condition in bold is the preferred choice in
each pairwise comparison. HF: Hand-Face Gaze, FHF: Face-Hand-Face Gaze,
H: Hand Gaze, L: Likability, A: Anthropomorphism, TC: Timing Communica-
tion, BPDT: Binary Proportion Difference Test, ET: Equivalence Test.
BPDT ET
Z score P-value Zscore P-value
HF vs. FHF -0.27 0.39 0.29 0.38

Metrics Gaze Conditions

L HF vs. H -0.24 0.41 -0.57 0.28

FHF vs. H -0.08 0.47 -0.92 0.18

HF vs. FHF -0.41 0.34 -0.67 0.25

Video A HF vs. H -0.20 0.42 -0.34 0.37
FHF vs. H -0.12 0.45 0.83 0.20

HF vs. FHF -0.13 0.45 -0.03 0.51

TC HF vs. H 0.00 0.50 -0.33 0.37

FHF vs. H 0.00 0.50 0.31 0.38

HF vs. FHF -0.61 0.27 -0.20 0.58

L HF vs. H -0.07 0.47 0.41 0.66

FHF vs. H 0.26 0.40 0.32 0.62

HF vs. FHF -0.47 0.32 0.43 0.33

In-Person A HF vs. H 0.08 0.47 0.56 0.71
FHF vs. H 0.19 0.43 -0.23 0.41

HF vs. FHF -0.24 0.41 -0.03 0.51

TC HF vs. H 0.08 0.47 -0.14 0.44

FHF vs. H 0.24 0.41 -0.66 0.25
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Table B.9: Results of binary proportion difference test and equivalence test for
matched pairs comparing sitting and standing user’s preferences of robot gaze
in handovers. Gaze condition in bold is the preferred choice in each pairwise
comparison. HF: Hand-Face Gaze, FHF: Face-Hand-Face Gaze, H: Hand Gaze,
L: Likability, A: Anthropomorphism, TC: Timing Communication, BPDT: Bi-
nary Proportion Difference Test, ET: Equivalence Test.

. . BPDT ET
Metrics - Gaze Conditions Z score P-value Zscore P-value
HF vs. FHF -1.08 0.15 -0.63 0.26
L HF vs. H 0.20 0.42 -0.04 0.52
FHF vs. H 0.24 0.41 -0.05 0.52
HF vs. FHF -0.49 0.31 0.71 0.24
Video A HF vs. H 0.24 0.41 -0.65 0.74
FHF vs. H 0.24 0.41 -0.60 0.72
HF vs. FHF -0.27 0.40 0.44 0.33
TC HF vs. H 0.33 0.37 0.16 0.43
FHF vs. H -0.08 0.47 -0.21 0.58
HF vs. FHF 0.20 0.42 -0.28 0.39
L HF vs. H -0.21 0.42 -0.51 0.31
FHF vs. H -0.37 0.36 0.72 0.24
HF vs. FHF 0.19 0.43 -0.20 0.42
In-Person A HF vs. H -0.21 0.42 -0.39 0.35
FHF vs. H -0.40 0.35 0.06 0.48
HF vs. FHF 0.64 0.26 -0.45 0.33
TC HF vs. H -0.16 0.44 0.48 0.32
FHF vs. H 0.08 0.47 -0.32 0.38
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Table B.10: Results of binary proportion difference test and equivalence test for
unmatched pairs comparing video and in-person user’s preferences of robot
gaze in handovers (for small and large object sizes). Gaze condition in bold is
the preferred choice in each pairwise comparison. HF: Hand-Face Gaze, FHF:
Face-Hand-Face Gaze, H: Hand Gaze, L: Likability, A: Anthropomorphism, TC:
Timing Communication, BPDT: Binary Proportion Difference Test, ET: Equiva-
lence Test.

. . .. BPDT ET

Object  Metrics  Gaze Conditions Statistic P-value Statistic P-value

HF vs. FHF -0.42 0.67 0.39 0.35

L HF vs. H 0.11 0.91 -0.92 0.18

FHF vs. H 1.48 0.14 0.19 0.58

HF vs. FHF -0.51 0.61 0.31 0.38

Small A HF vs. H -0.21 0.83 0.80 0.21

FHF vs. H 0.85 0.40 -0.32 0.38

HF vs. FHF 0.00 1.00 -0.75 0.23

T HF vs. H -1.23 0.22 -0.25 0.60

FHF vs. H 0.99 0.32 0.04 0.52

HF vs. FHF -0.49 0.62 0.29 0.38

L HF vs. H 0.41 0.68 -0.57 0.28

FHF vs. H 0.11 0.91 -0.92 0.18

HF vs. FHF 0.08 0.94 -0.67 0.25

Large A HF vs. H 0.57 0.57 -0.34 0.37

FHF vs. H -0.22 0.83 0.83 0.20

HF vs. FHF -0.79 0.43 -0.03 0.51

T HF vs. H 0.54 0.59 -0.33 0.37

FHF vs. H -0.51 0.61 0.31 0.38
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Table B.11: Results of binary proportion difference test and equivalence test for
unmatched pairs comparing video and in-person user’s preferences of robot
gaze in handovers (for non-fragile and fragile object sizes). Gaze condition
in bold is the preferred choice in each pairwise comparison. HF: Hand-Face
Gaze, FHF: Face-Hand-Face Gaze, H: Hand Gaze, L: Likability, A: Anthropo-
morphism, TC: Timing Communication, BPDT: Binary Proportion Difference
Test, ET: Equivalence Test.

Object Metrics Gaze Conditions BPDT ET

Statistic P-value Statistic P-value
HF vs. FHF 0.17 0.87 -0.63 0.26

L HF vs. H -1.05 0.29 -0.04 0.52

FHF vs. H -1.24 0.21 -0.05 0.52

HF vs. FHF -0.08 0.94 0.71 0.24

Non-Fragile A HF vs. H -1.59 0.11 -0.65 0.74
FHF vs. H -1.61 0.11 -0.60 0.72

HF vs. FHF -0.31 0.76 0.44 0.33

T HF vs. H -0.82 0.41 0.16 0.43

FHF vs. H -1.03 0.30 -0.21 0.58

HF vs. FHF -0.23 0.82 0.51 0.30

L HF vs. H -0.74 0.46 0.45 0.33

FHF vs. H -0.11 0.91 0.96 0.17

HF vs. FHF -0.15 0.88 0.59 0.28

Fragile A HF vs. H -0.93 0.35 0.06 0.47
FHF vs. H -0.73 0.47 0.27 0.39

HF vs. FHF -0.46 0.65 0.27 0.39

T HF vs. H -0.60 0.55 0.36 0.36

FHF vs. H -0.49 0.62 0.30 0.38
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Table B.12: Results of binary proportion difference test and equivalence test for
unmatched pairs comparing video and in-person user’s preferences of robot
gaze in handovers (for the giver’s standing and sitting postures). Gaze condi-
tion in bold is the preferred choice in each pairwise comparison. HF: Hand-Face
Gaze, FHF: Face-Hand-Face Gaze, H: Hand Gaze, L: Likability, A: Anthropo-
morphism, TC: Timing Communication, BPDT: Binary Proportion Difference
Test, ET: Equivalence Test.

. . BPDT ET
Posture  Metrics  Gaze Conditions Statistic P-value Statistic P-value
HF vs. FHF -1.00 0.32 -0.20 0.58
L HF vs. H 1.27 0.20 0.41 0.66
FHF vs. H 1.19 0.23 0.32 0.62
HF vs. FHF -0.31 0.76 0.43 0.33
Standing A HF vs. H 1.37 0.17 0.56 0.71
FHF vs. H 0.62 0.54 -0.23 0.41
HF vs. FHF -0.77 0.44 -0.03 0.51
T HF vs. H 0.71 0.48 -0.14 0.44
FHF vs. H 0.17 0.87 -0.66 0.25
HF vs. FHF 0.47 0.64 -0.28 0.39
L HF vs. H 0.36 0.72 -0.51 0.31
FHF vs. H -0.19 0.85 0.72 0.24
HF vs. FHF 0.53 0.60 -0.20 0.42
Sitting A HF vs. H 0.43 0.67 -0.39 0.35
FHF vs. H -0.82 0.41 0.06 0.48
HF vs. FHF 0.32 0.75 -0.45 0.33
T HF vs. H -0.34 0.73 0.48 0.32
FHF vs. H 0.52 0.60 -0.32 0.38
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