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Abstract— We develop and evaluate two human-robot han-
dover controllers that allow end-users to specify timing param-
eters for the robot reach motion, and that provide feedback if
the robot cannot satisfy those constraints. End-user tuning with
feedback is a useful controller feature in settings where robots
have to be re-programmed for varying task requirements but
end-users do not have programming knowledge. The two con-
trollers we propose are both receding-horizon controllers that
differ in their objective function, and their user specified pa-
rameters, and subsequently their user-interface: One controller
uses a minimum cumulative jerk (MCJ) objective function,
and the other a minimum cumulative error (MCE) objective
function. We implemented the controllers on a collaborative
robot and conducted two controlled experiments to compare
the user experience and performance of these controllers vis-à-
vis a baseline proportional velocity (PV) controller. In each
experiment, participants (n = 30) interactively tuned the
controller parameters, and collaborated with a robot to perform
a time-constrained repetitive task. We found that the timing
controller with the MCE implementation can provide a better
user experience, both while setting the parameters (p = 0.011)
and performing the handovers with the robot (p < 0.001),
and fewer failures (p = 0.016) compared to the PV controller,
however the MCJ implementation did not provide better user
experience compared to the PV controller. The MCJ controller
also resulted in more failures than the PV controller. These
results could inform the design of usable and effective end-user
configurable controllers for human-robot interaction.

Index Terms— End-User Programming, Human-Robot Han-
dovers, Model Predictive Control

I. INTRODUCTION

We present two controllers for human-robot handovers, in
which end-users can specify the robot’s behavior in terms of
reach-to-handover timing parameters, along with two studies
evaluating the controllers’ performance. Prior studies of
human-robot handovers did not consider scenarios where par-
ticipants need to design the robot’s handover controllers for a
collaborative task with timing constraints. Such a flexibility
is important in industrial settings with dynamically changing
task requirements, and it can increase the acceptance of
robots as coworkers. The majority of existing handover
controllers require tuning non-intuitive controller parameters
to specify the robot’s behavior, for example, proportional
gain [1]–[3] or Dynamic Movement Primitive (DMP) pa-
rameters [4], [5]. Some researchers have proposed handover
controllers with intuitive parameters, for example timings of
different phases of handovers [6] and delay/reach timings [7],
but these controllers were not evaluated experimentally in
scenarios where end-users can specify these parameters.

† A. Kshirsagar and R. Ravi contributed equally to this work.
All authors are with Sibley School of Mechanical and Aerospace
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Our proposed controllers not only allow users to specify
intuitive timing constraints for the object handover, but also
provide feedback to the end-user if they cannot satisfy those
constraints, which can be used to better tune the controller.
We use Receding Horizon Control (RHC), also known as
Model Predictive Control (MPC), to generate the robot’s
closed-loop motion towards the human’s hand from the user
specified timing constraints. We implement the controllers
on a collaborative robot with two different motion strate-
gies, encoded as objective functions and timing constraints:
minimum cumulative jerk (MCJ) and minimum cumulative
error (MCE). In the MCJ strategy, the users can specify
the maximum reaching time of the robot and the controller
generates a minimum jerk trajectory towards the human hand
within the specified time limit. In the MCE strategy, the users
can specify a stall time along with the maximum reaching
time of the robot and the controller generates a trajectory
with a minimum cumulative error from the human hand.

We conducted two studies to evaluate the user experience
and task performance with each motion strategy. In our
studies, users interact with a physical robot to handle time-
sensitive “vaccine vials,” which have a minimum and a
maximum air exposure time. The vials need to be packaged
at a variety of locations, making the robot’s handover strategy
sensitive to the object and the final location. Participants
design the robot’s handover behavior by specifying the
controller parameters for each controller and then have to
use the controllers they tuned to perform the collaborative
vaccine packaging task.

Each of the two controllers is compared to a baseline pro-
portional velocity (PV) controller, a commonly used closed-
loop controller for generating reach-to-handover motions [1],
[2]. In the PV controller, the robot’s instantaneous cartesian
velocity is proportional to the distance from the human’s
hand, and the users can tune the proportional gain.

We find that the timing controller with the MCE strategy
can provide better user experience and fewer failures com-
pared to the PV controller, but we did not find any evidence
to support that the timing controller with the MCJ strategy
performs better than the baseline PV controller.

Contributions

To the best of our knowledge, this is the first study
in which users design a collaborative robot’s behavior for
an industrial task with timing constraints. Our proposed
controllers, unlike the existing robot controllers for object
handovers, use intuitive parameters and provide feedback to
the user. We find that two different instances of our proposed
controller have contrasting effects on the user experience
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and task performance, even though they both have intuitive
timing parameters and provide failure feedback. Our findings
could shed light towards the design of better user-defined
controllers for human-robot handovers.

II. RELATED WORK

We situate our work in the context of prior studies of
human-robot handovers, and the existing controllers for the
reach phase of handovers.

A. Studies of Human-Robot Handovers

HRI researchers have studied human-robot handovers to
understand human preferences for robot behaviors in dif-
ferent phases of a handover. This includes the approach [8],
reach [5], [7], [9]–[12] and transfer [13], [14] phases of han-
dovers. Some of these studies allowed users to interactively
design the robot’s handover behavior. Koay et al. [8] studied
human’s preferences about how the robot should approach,
stop and hand over an object, by actively involving the
participants in the creation of the robot’s handover motion.
Rasch et al. [15] asked participants to interactively guide a
humanoid robot into different handover configurations and
label the configurations as proper or improper. Cakmak et
al. [10] conducted a user study to learn human prefer-
ences towards handover configurations in robot-to-human
handovers by asking participants to configure the robot in
what they think is a good or a bad configuration. In Porfirio
et al.’s study [16], the users are asked to design a robot
behavior from six micro-interactions for a package delivery
task while obeying certain social norms. However, none of
the prior works studied user-defined handover controllers for
an industrial task with timing constraints, which is the focus
of our present work.

B. Controllers for Robot’s Reach-to-Handover Motion

Existing robot controllers for the reach phase of handovers
can be broadly categorized into two groups: open-loop
and closed-loop. Open-loop controllers compute the robot’s
reach-to-handover motion trajectory before the start of the
handover and do not update it during the reach phase [9],
[10], [12]. These controllers are not suitable for reactive
motion planning, and require the human to adapt to the
robot’s motion. Closed-loop controllers constantly update
the robot’s reach-to-handover motion trajectory taking into
account the observed behavior of the human [1]–[5], [9].
The majority of these closed-loop controllers require tuning
non-intuitive controller parameters to generate the robot’s
behavior. For example, proportional gain in [1]–[3], DMP
weights in [4], [5], trapezoidal velocity profile parameters
in [9]. Some recent works have proposed handover con-
trollers with intuitive parameters [6], [7] but these controllers
do not provide feedback to the end-users to help them
tune the controller parameters. We seek to address this gap
by investigating closed-loop reach-to-handover controllers
which use intuitive timing parameters and provide failure
feedback to the user.

III. HANDOVER CONTROLLER WITH TIMING
PARAMETERS

We hope to understand how to design handover controllers
that can be tuned intuitively by end-users. We seek to inves-
tigate how user-specified timing constraints should translate
into controller parameters in a way that results in a high
user experience and an efficient and useful controller. Our
controllers in this study focus on the “reach” phase of the
robot-to-human handover.

We propose two MPC [17] closed-loop controllers with
reach time parameters for generating reach-to-handover mo-
tions of a robot. The MPC framework computes control
inputs ut:t+L−1 for a given time horizon of length L, so
that these controls optimize an objective function J under a
set of N constraints {h1, . . . , hN}. The objective function
and constraints are defined over the system state xt at time
step t and the control input. Formally, MPC solves

minut:t+L−1
Jt:t+L−1(xt,ut:t+L−1), (1a)

s.t. hn(xi,ui) ≤ 0, ∀i ∈ [t, t+ L− 1], ∀n ∈ [1, N ] (1b)

We formulate two instances of the MPC optimization
problem for a robot’s reach-to-handover motion generation.
The two instances differ in terms of the objective functions
and timing parameters that are specified by the user. We con-
vert these timing parameters into MPC constraints, and the
constrained optimization problem is solved at each time step
in a receding horizon mode. The control input is given as the
robot’s end-effector velocity. If there is no feasible solution
to the optimization problem at any time step, feedback is
provided to the user that the robot is unable to reach the
handover location within the specified constraints.

A. Minimum Cumulative Jerk (MCJ) Controller

In our first MPC implementation, users can specify the
maximum reaching time of the robot and the controller
generates a minimum jerk trajectory towards the human
hand. Minimum Jerk is one of the most prominent models
of point-to-point human arm movements [18]–[20]. Given
a maximum reaching time, this controller should generate
a smooth trajectory toward the human’s hand. To main-
tain smoothness (i.e., minimize jerk), this strategy tends
to generate a slow robot motion that still stays within the
timing constraint. Formally, the MPC objective function and
constraints for this strategy are given by:

min
L−1∑
i=0

üt+i, (2)

s.t.
xt+i+1 = xt+i + ut+i∆t ∀i ∈ [0, L− 1],

(System Dynamics)
(3a)

||ut+i|| ≤ umax ∀i ∈ [0, L− 1],

(Velocity Limit)
(3b)

x0 = [px, py, pz] ,

(Initial End Effector Position)
(3c)
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u0 = [0, 0, 0]
T
,

(Zero Initial Velocity)
(3d)

||xireach−1 − hireach−1|| ≤ ϵx,

(Get Near Human Hand at Reach Time)
(3e)

||uireach−1|| ≤ ϵu.

(Reach Velocity near Zero)
(3f)

In the above formulation, the current time step is t, the
prediction horizon is L, ∆t is the time step size, u is the
control input i.e. robot end-effector’s velocity, umax is the
maximum permissible speed of the robot’s end-effector, x
is the position of the robot’s end-effector, [px, py, pz] is the
initial Cartesian position of the robot’s end-effector, ireach is
the time step corresponding to the user specified reach time
tr, h is the position of the user’s hand, ϵx and ϵu are the
position and velocity tolerances.

B. Minimum Cumulative Error (MCE) Controller

Our second MPC implementation uses a minimum cumu-
lative error (MCE) optimization strategy, meaning that the
robot will try to minimize the total distance from the human
hand over the whole trajectory. In contrast to the smooth
but slower trajectories produced by the MCJ controller, we
expect the MCE controller to generate fast robot trajectories,
as these will have the lowest cumulative error. To allow users
to also tune the lower bound of the reach time, users can
specify a stall time along with the maximum reaching time
of the robot and the controller generates a MCE trajectory
after stalling for the specified amount of time.

Formally, the MPC objective function for this strategy is
represented by,

min
L−1∑
i=0

||xt+i − ht+i||2. (4)

The constraints are identical to the MCJ formulation, with
one exception: Eq. 3d is replaced by,

ui = [0, 0, 0]
T ∀i ∈ [0, istall − 1] , (5)

which means that the robot end-effector’s velocity is 0 for
the user specified time steps istall.

C. Baseline Controller

To evaluate the user experience and task performance
of the two timing controllers, we compare them with a
proportional velocity (PV) baseline controller. PV is a widely
used closed-loop controller for generating reach-to-handover
robot motions [1], [2]. This controller commands the robot’s
instantaneous Cartesian velocity ut to be proportional to the
distance between the robot end-effector’s position xt and the
position of the human’s hand ht i.e.,

ut = kp||xt − ht||, (6)

where kp is the user specified proportional gain. The control
input is limited by the maximum permissible velocity of the
end-effector, i.e., ||ut|| ≤ umax.

IV. STUDY DESIGN

We conducted two studies to compare the user experience
and task performance of our proposed timing controllers with
the baseline PV controller in an industrial task simulated in a
lab setting. The first study evaluated the MCJ controller and
the PV controller, and the second study evaluated the MCE
controller and the PV controller. In each study, we performed
this comparison in two scenarios: first, a “non-optimization”
scenario where users need to tune the controller parameters
to successfully perform the task, but not necessarily in the
shortest possible time, and second, an “optimization” sce-
nario where they need to optimize the controller parameters
to reduce the task duration and earn additional money. Our
study design was motivated by these research questions:
Whether and to what extent do the proposed controllers offer
a better user experience than a baseline controller? Whether
and to what extent do the proposed controllers improve
efficiency of handovers as compared to a baseline controller?

A. Hypotheses

Since the timing controllers allow users to specify intuitive
parameters and provide feedback to the user, we hypothesize
that H1: A timing controller will provide a better user
experience than a PV controller. We formulate similar hy-
potheses for three components of user experience: efficiency,
perspicuity and dependability. H1a: A timing controller will
have higher efficiency than a PV controller. H1b: A timing
controller will have higher perspicuity than a PV controller.
H1c: A timing controller will have higher dependability
than a PV controller. Since the timing controllers allow
users to specify time constraints on the robot’s motion, we
hypothesize that H2: A timing controller will have lower
failures in a time-constrained task than a PV controller.
We do not expect the timing controller to generate slower
trajectories than a PV controller. Thus, we hypothesize that
H3: A timing controller will not have higher task duration
in a time constrained task than a PV controller. H4: A
timing controller will not have higher human idle time in
a time constrained task than a PV controller. H5: A timing
controller will not have higher robot idle time in a time
constrained task than a PV controller. We preregistered on
a public experimental registry1. The experiment protocol was
approved by Cornell University’s Institutional Review Board
for Human Participants.

B. Collaborative Task with Time Constraints

We tested the different robot controllers in a human-robot
collaboration task consisting of object handovers from the
robot to the human. The task simulates a scenario of vaccine
packaging in the pharmaceutical industry: A person and a
robot work together to transfer vaccine vials from a storage
location to different packages, while ensuring that vaccines
do not get over-exposure or under-exposure to air, i.e., the
handover time of the vial from the robot to the human falls
within acceptable bounds. The experiment setup, as shown

1https://aspredicted.org/blind.php?x=5uk95q
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in Fig. 2, consists of three types of vaccines, G (green),
Y (yellow), and R (red), and three packaging stations at
different distances from the storage rack. The robot arm
picks up the vials sequentially from the storage rack and
hands them over to the person who has to place the vials in
the packaging stations. One limitation of the MCE, MCJ
and PV controllers is that they do not consider the 3D
orientation information, and the robot always has a fixed
orientation in our studies. The person is not allowed to enter
the refrigeration zone around the storage stack, and if their
hand is in this region the system generates a loud beeping
sound. The robot starts the handover only if the person’s hand
is in the reachable work-space of the robot. Each vaccine has
a different range of permissible exposure constraints, shown
in Fig. 1, therefore requiring different time spans for the
handover. For example, the green vaccine needs to be handed
over within 1 to 4 seconds.

Fig. 1: Graphical Interface showing the time constraints for each vaccine

In each study session, there were two types of rounds for
each controller: design and test. Users tuned the controller
parameters in the “design” round and performed the vaccine
packaging task in the “test” round. In the design round, users
could tune the controller parameters by performing han-
dovers with different vaccine vials at the different packaging
stations and observing the handover time. Once the design
round was over, the controller parameters were locked-in for
the subsequent test round. In the test round, users needed
to place a set of vaccine vials, handed over by the robot,
in three different packaging stations following a predefined
sequence. In each study session, there were two types of
test rounds: non-optimization and optimization. In the design
round before the non-optimization test round, users tuned the
controller parameters so that the vials are handed over within
the timing constraints, but not necessarily in the shortest
possible time. In the design round before the optimization
test round, they re-tuned those controller parameters to
perform the vaccine packaging task in the shortest time.

C. Monetary Incentive Scheme

For more external validity, we designed a monetary reward
system to incentivize participants in the optimization test
round: If they performed the task faster than a specified
time limit, participants would get $1 per second less than
the specified time limit. For each second spent by the user
in the unsafe refrigeration zone, they were penalized by $1.
Each failed handover incurred a penalty of $2.

D. Robot and User Interface

We implemented the MCE, MCJ and PV controllers in the
Python programming language, and programmed a Kinova
Gen 3 robot using the Robot Operating System (ROS) to

Fig. 2: The experiment setup consisted of a stack of vaccine vials, three
packaging stations, a Kinova Gen3 robot arm, a screen to display UIs, and
an OptiTrack system. The participants were penalized if they entered the
area inside the blue tape i.e. the unsafe zone.

perform the vaccine packaging task autonomously with a
human. We used an OptiTrack system to track the human
hand and the robot’s gripper. The robot released the vial if
the human’s hand was within a certain distance from the
robot’s gripper. We developed graphical interfaces in Qt for
each controller. The timing constraints and the controller
parameters of each vaccine are shown in Fig. 3 (PV con-
troller), Fig. 4 (MCJ controller), and Fig. 5 (MCE controller).
During the design rounds, the UI display screen showed the
controller interface, current handover timer, design round’s
countdown timer, packaging sequence and time constraints
for each vaccine. In the test rounds, only the controller
interface, vaccine packaging sequence and time constraints
for each vaccine were shown.

E. Human Motion Model

The MCE and MCJ controllers can utilize a prediction
model of the human hand’s motion in the reach phase of
a handover. In our pilot trials, we observed that the users
reached the handover location much faster than the robot,
and waited for the robot at the handover location. Therefore
in our studies, we used a static model of the human hand’s
position h over the prediction horizon L, given by,

ht+i = ht∀i ∈ [0, L− 1]. (7)

The human hand’s position is updated at each time-step using
the observations from the OptiTrack system.

F. Experiment Procedure

Participants signed a consent form, read study instructions,
and then performed an unrecorded practice session consisting
of a design and a test round with a dummy controller to
get familiarized with the experiment setup. The main part
of the experiment consisted of two pairs of design and
test rounds, one for each controller. The first test round
was the non-optimization round and the second test round
was the optimization round, as described in Section IV-B
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and Section IV-C. The participants did not know about the
monetary incentive a-priori and an experimenter explained
the reward system only after the participants finished the non-
optimization rounds with each of the two controllers. The
order of controllers was randomized and counterbalanced to
avoid recency effects.

In each design round, the participants were given 5 min-
utes to tune the robot’s controller parameters. Participants
specified the controller parameters verbally to the experi-
menter, who activated the the UIs shown in Fig. 3 (PV),
Fig. 4 (MCJ), and Fig. 5 (MCE). Participants would see the
UI screen from their workspace position, as shown in Fig. 2.
This choice was made to save participants the time to move
back and forth between the workspace area and the keyboard
and mouse area of the UI computer. Participants could test
their specified parameters by verbally requesting the robot to
hand over a vaccine vial, and updating the parameters after
observing the handover time for that vaccine. They could do
so as many times as they wanted within the 5 minute design
round. The participants’ verbal requests were relayed to the
robot by the experimenter, to avoid speech processing errors.

Fig. 3: Graphical Interface for the PV controller

Fig. 4: Graphical Interface for the MCJ controller

Each design round was followed by a test round in which
the participants had to perform 18 sequential handovers with
the robot, which used the final controller parameters from
the design round. The robot autonomously handed over the
vials, one by one, in the following order: six green vaccines,
six yellow vaccines and six red vaccines. The participants
had to receive the vials and place them in a pre-defined

Fig. 5: Graphical Interface for the MCE controller

packaging sequence shown in Fig. 6. The participants were
asked to move to the next packaging station before receiving
the vaccine vial. This rule forced participants to perform
handovers at different packaging stations, and the pre-defined
packaging sequence ensured that the three vaccine types were
handed over at each of the three stations.

Fig. 6: Sequence of vaccines to be placed at each packaging station

After finishing each of the non-optimization and optimiza-
tion test rounds with both controllers, participants reported
their experience of working with each controller. We used
Laugwitz et al.’s [21] user experience questionnaire to elicit
the efficiency, perspicuity, and dependability ratings of each
of the controllers. In Study 1, we also collected responses to
these measures of workload: mental demand, performance,
effort, and frustration, using the NASA TLX questionnnaire,
but in Study 2 we did not measure these variables (see:
Section IV-G). Additionally, at the end of the experiment
participants were asked to provide a written response to the
prompt: “Please write a few sentences comparing the two
controllers based on your experience of designing and using
them in this experimental task”.

We recorded the duration of the test rounds, the robot’s and
the human’s idle time during the test rounds, and the number
of handover failures in the test rounds. In the first study,
failures include handovers with timing constraint violations,
and—for the timing controller—also cases in which the
controller could not find a feasible solution. In the second
study, we also counted instances of vials falling from users’
hand during the handover as failures (see: Section IV-G).

G. Design Differences Between Study 1 and Study 2

The experiment design of both of our studies was similar
except for the following differences:.

• In Study 1, we asked participants to report their expe-
rience of “utilizing this controller for performing this
task”. We realized that this question combines two dif-
ferent user experiences: one of specifying the controller
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TABLE I: Summary of Quantitative Results of Study 1 and Study 2

Study 1 : Non-optimization Study 1 : Optimization Type Study 2 : Non-optimization Study 2 : Optimization
Variable MCJ PV MCJ PV MCE PV MCE PV

Efficiency 4.72 (1.05) 4.64 (1.09) 4.73 (0.99) 5.08 (1.01) P 5.38(1.21) 4.53(1.17) 5.06(1.31) 4.65(1.37)
C 5.45(1.15) 4.52(1.14) 5.23(1.37) 4.70(1.44)

Perspicuity 4.79 (1.34) 4.82 (1.42) 4.39 (1.37) 4.83 (1.45) P 5.45(1.37) 4.89(1.44) 5.06(1.97) 4.60(1.48)
C 5.95(1.08) 5.11(1.23) 5.45(1.72) 4.49(1.54)

Dependability 4.92 (1.01) 4.97 (1.24) 4.58 (1.21) 5.22 (1.00) P 5.56(1.25) 4.79(1.27) 5.08(1.58) 4.48(1.26)
C 5.77(1.11) 4.73(1.04) 5.42(1.31) 4.43(1.42)

Overall UE 4.81 (0.98) 4.81 (1.16) 4.56 (1.02) 5.04 (1.01) P 5.46(1.21) 4.74(1.19) 5.02(1.71) 4.57(1.31)
C 5.72(1.01) 4.78(1.03) 5.42(1.30) 4.43(1.60)

Failures 2.77(2.67) 1.87(1.83) 2.43(2.57) 1.43(1.48) - 1.93(3.93) 2.97(2.82) 1.63(3.22) 3.10(3.06)
Task Duration 286.07(15.00) 250.00(6.48) 281.08(9.96) 245.52(5.25) - 268.25(28.25) 246.42(10.87) 259.63(12.08) 240.08(10.04)

HIT 198.29(21.38) 163.71(20.32) 200.85(22.13) 168.88(17.25) - 178.28(34.96) 156.44(21.42) 180.80(19.51) 159.34(24.63)
RIT 165.21(12.58) 142.56(7.70) 162.67(10.77) 138.08(5.77) - 166.40(34.36) 151.83(15.60) 159.81(17.52) 148.91(14.35)

P: Programming, C: Collaborating, HIT: Human Idle Time, RIT: Robot Idle Time

parameters and one of physically performing the han-
dovers with the robot. To measure these two variables
separately, in Study 2, we asked participants to report
their experience of “programming the robot (setting the
parameters) with this controller”, and additionally, their
experience of “physically collaborating with the robot
(handling the vaccines) with this controller”.

• In Study 1, we collected responses to the NASA TLX
questionnaire to measure user workload. We found that
these scores were correlated with the user experience
(UE) scores.Therefore, in Study 2 we did not use the
NASA TLX questionnaire.

• In Study 1, the feedback from the MCJ timing con-
troller was “Couldn’t reach your hand in time” and the
experimenter verbally told participants that they need
to increase the reach time. In Study 2, we changed
the feedback from the MCE controller to a more com-
prehensible prompt: “I will not be able to reach in
the specified time limit”, and to maintain uniformity
across participants, the experimenter did not provide any
additional prompts.

• In Study 1, we noticed some instances of vials falling
from the participants’ hands during the handover, but
we could not record these instances. In Study 2, we
decided to record these instances since such falls are a
mode of failure of the robot’s handover controller.

• In the optimization test rounds of Study 1, the time
limit for earning the monetary rewards described in
Section IV-C was: 279.19 seconds (SD=3.96) for the
MCJ controller and 245.16 seconds (SD=3.34) for the
PV controller. In Study 2, this time limit was: 260
seconds (SD=0.0) for the MCE controller and 245
seconds (SD=0.0) for the PV controller, because the
MCE controller resulted in faster handovers, on average,
as compared to the MCJ controller.

H. Participants

31 participants (12 engineering, 19 non-engineering) par-
ticipated in Study 1, and a different set of 30 participants (2
engineering, 28 non-engineering) participated in Study 2. We
did not use the same participants in both the studies to avoid
learning effects. In Study 1, there was an error in the data

logging system for one participant, and we do not include
this participant in the analysis of task duration and handover
failures. Additionally, another participant did not fill out one
of the user experience questionnaires, and we do not include
this participant in the analysis of user experience. Thus we
have n = 30 observations for all analyses. Each study session
took approximately 90 minutes, and the participants were
compensated a minimum of $15, and additional rewards
based on performance in the optimization round. The average
payout was $18.42 for Study 1 and $19.57 for Study 2.

V. RESULTS

A. Quantitative Results

Table I shows the summary of quantitative results of
both studies, where the mean and standard deviation of the
dependent variables in the non-optimization and optimiza-
tion rounds are shown. To test the hypotheses H1–H5, we
conducted paired sample Student’s t-tests on the measured
differences. In case of significant deviations from normality,
checked with the Shapiro-Wilk Normality test, we used the
Wilcoxon’s signed-rank test. The results of these tests are
shown in Table II.

B. Qualitative Feedback

At the end of the study session, we had asked participants
to provide qualitative feedback, with the prompt “Please
write a few sentences comparing the two controllers based
on your experience of designing and using them in this
experimental task”. Two coders independently analyzed the
comments to find which controller each participant preferred
in terms of efficiency, perspicuity, dependability and han-
dover quality. The inter-coder reliability was 87.1% in Study
1 and 84.2% in Study 2.

The majority of the participants who wrote comments
related to perspicuity preferred the perspicuity of the timing
controllers over that of the baseline PV controller: 18 out of
28 in Study 1 and 17 out of 26 in Study 2.
Study 1, P22: “The speed multiplier [PV] controller was a
little more difficult to learn because I did not have a great
idea of what the base speed was or what speed a number
would produce until after practicing with the controller.”
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TABLE II: Results of Paired Sample Tests for Hypotheses H1–H5 for the optimization and non-optimization rounds

Non-optimization Round Optimization Round
Hypothesis Variable C1 C2 Test Statistic p-Value Effect Size Test Statistic p-Value Effect Size

H1a Efficiency (P) MCE PV S −2.658 0.006∗∗ −0.485 S −1.307 0.101 −0.239
H1a Efficiency (C) MCE PV S −3.102 0.002∗∗ −0.566 S −1.859 0.037∗ −0.339
H1a Efficiency MCJ PV S −0.256 0.4 −0.047 S 1.696 0.950 0.310
H1b Perspicuity (P) MCE PV S −1.556 0.065 −0.284 S −1.002 0.162 −0.183
H1b Perspicuity (C) MCE PV S −2.844 0.004∗∗ −0.519 S −3.245 0.001∗∗ −0.592
H1b Perspicuity MCJ PV S 0.065 0.526 0.012 S 1.144 0.869 0.209
H1c Dependability (P) MCE PV S −2.776 0.005∗ −0.507 S −1.635 0.056 −0.298
H1c Dependability (C) MCE PV S −3.679 < 0.001∗∗∗ −0.672 S −3.452 < 0.001∗∗∗ −0.630
H1c Dependability MCJ PV S 0.170 0.567 0.031 S 2.402 0.989 0.439
H1 Overall UE (P) MCE PV S −2.426 0.011∗ −0.443 S −1.197 0.120 −0.219
H1 Overall UE (C) MCE PV S −3.547 < 0.001∗∗∗ −0.648 S −3.307 0.001∗∗ −0.604
H1 Overall UE MCJ PV S 0.0 0.5 0.000 S 1.848 0.963 0.337
H2 Failures MCE PV W 278.5 0.016∗ 0.474 S 2.068 0.024∗ 0.378
H2 Failures MCJ PV S −1.451 0.921 −0.265 S −1.912 0.967 −0.349
H3 Task Duration MCE PV W 13.0 1.000 −0.944 W 6.0 1.000 −0.974
H3 Task Duration MCJ PV W 0.0 1.000 −1.000 S −18.260 1.000 −3.334
H4 Human Idle Time MCE PV W 38.0 1.000 −0.837 S −6.291 1.000 −1.149
H4 Human Idle Time MCJ PV W 2.0 1.000 −0.991 S −15.455 1.000 −2.822
H5 Robot Idle Time MCE PV W 46.0 1.000 −0.789 S −3.053 0.998 −0.557
H5 Robot Idle Time MCJ PV S −11.187 1.000 −2.042 S −12.236 1.000 −2.234

C1: Controller 1, C2: Controller 2, S: Student’s t-test, W: Wilcoxon’s signed-rank test, (P): Programming, (C): Collaborating
∗ p < 0.05, ∗∗ p < 0.005, ∗∗∗ p < 0.001

Study 2, P28: “Personally, I like the time [MCE] controller
compared to the second one [PV] because the multiplier
[PV] is kind of confusing. Although there is pattern
and relation between multiplier and speed of the robot
reaching my hand, it takes me some time to think about
what it means and how it is related to the robot’s speed.”
Study 2, P04: “[PV] was much easier to use since it was
more straight forward and I only had to worry about one
parameter instead of 2.”

The majority of the participants who wrote comments
related to the dependability of the controllers felt that the
PV controller was more dependable than the MCJ timing
controller (10 out of 12 participants), but the MCE timing
controller was more dependable than the PV controller (4
out of 5 participants).
Study 1, P26: “With the time controller [MCJ], I faced a
problem of the controller not being able to meet the set
time which felt like it needed more tuning of parameters
than it seems on paper.”
Study 2, P10: “With the time [MCE], I could select a
concrete amount of time and expect the robot arm not to
move until that set amount of time had passed.”

The majority of the participants who wrote comments
related to efficiency, preferred the baseline PV controller over
the timing controllers: 4/4 in Study 1 and 5/7 in Study 2.
Study 1, P01: “Since the three stations were at different
distances from the robot, I felt that the multiplier [PV]
worked better.”
Study 2, P18: “But, the multiplier [PV] may be more
efficient since you can change the speeds to deliver the
vials faster.”

VI. DISCUSSION

We developed handover controllers that allow users to
specify a robot’s behavior in terms of intuitive timing

parameters and provides failure feedback. Our hypothesis
was that—compared to a baseline PV controller—the timing
controllers would result in a better user experience and lower
failure rates, while not negatively affecting the handover
timing efficiency of the robot.

Our results suggest that “the devil is in the details.” Two
instances of a timing-with-feedback controller can result in
very different, and even opposite, user experience and task
performance. The instances developed for this study differ in
terms of the motion strategies of the robot, in turn encoded
as objective functions and constraints of the MPC problem.

Our findings indicate that the MCJ strategy, which we
initially thought would be preferred by users, results in a
lower user experience compared to a PV controller, more
prominently when the users have to optimize the controller
parameters for faster handovers, whereas the MCE strategy
results in a higher user experience compared to the baseline.
One possible cause for this is that the robot’s reach time,
when using the MCJ controller, is more sensitive to target
locations due to a gradual starting motion. This leads to
a higher number of instances of infeasible solution of the
MPC problem for MCJ (mean: 2.03, SD: 1.86) than MCE
(mean: 1.20, SD: 2.11). Another possible cause is that the
MCJ controller produces slower robot motions than the MCE
and PV controllers. Finally, the prompts of the controller
parameters and the feedback could have also affected the
user experience of designing the controllers.

We found that the MCE controller resulted in lower vial
falls from the human hand during the handover than the PV
controller2. This could be attributed to the fact that the PV
controller slows down the robot as it approaches the human
hand, and sometimes stops short of the human hand due to a
steady state error. Thus, users find it difficult to gauge exactly

2MCE mean falls: 0.07, PV mean falls: 0.4, W = 105.5, p =
0.005, r = 0.758
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when the object will be released by the gripper. In contrast,
the MCE controller often overshoots the target position and
thus thrust the object into the human hand, which may be
preferred by users. In Study 2, P14 commented, for example:
“I like how it got really close to my hand and basically put
the tubes into my hand.”

Both instances of our timing controller resulted in higher
test-round task duration, robot idle time, and human idle time
compared to the baseline controller. One possible cause is
that users were more conservative in setting the parameters
for the timing controller. For example, in case of the MCE
controller even though the optimal stall time for the green
vaccine was 0 seconds, 13 participants set a non-zero value
in the optimization round. Second, there is an inherent sub-
optimality with both instances of the timing controller for
our setup shown in Fig. 2. A reach time that is optimal for
handovers near the packaging station 1 might be infeasible
for handovers near the packaging station 3 because of the
longer travel distance from the storage rack. Thus, the user
has to select a higher reach time to have successful handovers
at all the packaging stations. Additionally the MPC controller
has a higher sample time increasing it’s response time by
approximately 0.2 seconds per handover.

One surprising result was that the participants rated the
MCE controller to be more efficient for physically collabo-
rating with the robot, compared to the PV controller, even
though the MCE controller resulted in higher task duration
than the PV controller. Based on the qualitative feedback
of some participants this could be attributed to the faster
robot motion produced by the MCE controller. In Study 2,
P30 commented, for example: “I also found it [PV] the
most annoying because it felt like it was moving so slowly.
I actually like the second one [MCE] better because it feels
like you are going faster.”

A few participants had more than 50% failures in the
test rounds. In Study 1, one participant had 11 failures
with the MCJ controller in the first test round. In Study 2,
three participants had more than 10 failures with PV, and
four participants had more than 10 failures with the MCE
controller. In their qualitative feedback, some participants
attributed these failures to their lack of experience with
robots. Study 2, P9: “I was a little slow at understanding how
the concept applied to the programming. I am not familiar
with robotics or programming them. Once I got the idea, it
made logical sense. But it took me a while to get there.”

We hope that our timing-with-feedback controllers will
be useful in scenarios where end-users need to design a
robot’s handover behavior. We investigated one such task
in this paper, and our studies revealed the advantages and
disadvantages of our proposed controllers vis-à-vis a baseline
controller. Our work can motivate further research towards
the design of better user-defined controllers for human-
robot handovers. This includes investigating other motion
strategies and constraints, designing corrective feedback, and
testing in real industrial settings.
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