
Lessons Learned from Utilizing Guided Policy
Search for Human-Robot Handovers with a

Collaborative Robot
Alap Kshirsagar*
Cornell University

Ithaca, USA
ak2458@cornell.edu

Tair Faibish*
Ben-Gurion University of the Negev

Be’er Sheva, Israel
tairse@post.bgu.ac.il

Guy Hoffman
Cornell University

Ithaca, USA
hoffman@cornell.edu

Armin Biess
Ben-Gurion University of the Negev

Be’er Sheva, Israel
abiess@bgu.ac.il

Abstract—We evaluate the performance of Guided Policy
Search (GPS), a model-based reinforcement learning method,
for generating the handover reaching motions of a collaborative
robot arm. In a previous work, we evaluated GPS for the
same task but only in a simulated environment. This paper
provides a replication of the findings in simulation, along with
new insights on GPS when used on a physical robot platform.
First, we find that a policy learned in simulation does not
transfer readily to the physical robot due to differences in model
parameters and existing safety constraints on the real robot.
Second, in order to successfully train a GPS model, the robot’s
workspace needs to be severely reduced, owing to the joint-space
limitations of the physical robot. Third, a policy trained with
moving targets results in large worst-case errors even in regions
spatially close to the training target locations. Our findings
motivate further research towards utilizing GPS in human-
robot interaction settings, especially where safety constraints are
imposed.

Index Terms—Physical Human-Robot Interaction, Reinforce-
ment Learning, Manipulation Planning

I. INTRODUCTION

In this work, we evaluate the potential of Guided Policy
Search (GPS) for learning robot reaching motions in human-
to-robot object handovers. GPS is a reinforcement learning
(RL) algorithm that was initially proposed by Levine et al. [1]–
[3]. Since then researchers have proposed several variations of
the GPS algorithm [4], and have successfully utilized them for
autonomous manipulation [5]–[8], and locomotion tasks [1],
[2], [6], [9]. However, the potential of GPS for human-robot
interaction tasks is less well-understood. Our work seeks
to address this gap, as human-interactive tasks have several
distinguishing features, which merit specific investigation.
For example, as detailed in our previous work, human-robot
handovers require large spatial variations in reach locations,
moving targets, and generalizing over changes in the robot’s
mass induced by the object being handed over [10]. The
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variant of GPS that we use in this work, GPS-Bregman Alter-
nating Direction Method of Multipliers (BADMM) [8], does
not require prior knowledge of the robot or the environment
dynamics.

Our previous work evaluated GPS-BADMM in a simulation
environment [10]. We found that the policy learned with GPS
does not perform well for test locations that are spatially
distant from training locations, and requires the addition of
more local controllers to cover high error regions. Further,
a policy trained with static targets generates unreasonably
high joint torques when tested with moving targets. More
efficient reaching trajectories can be obtained by training on
moving targets, although that decision results in higher worst-
case errors. Despite providing important insights, this prior
work is limited in its application because it was conducted in
simulation only, and not evaluated on a physical robot.

The goal of the present work is twofold: first, to replicate
our previous findings on a physical robot arm, and second, to
provide new insights on the challenges associated with the use
of GPS on a physical human-robot handover task.

II. POLICY SEARCH FORMULATION OF HANDOVERS

To formalize the reach phase of a handover task as an RL
problem, we specify the state-action space along with a cost
or reward function over the system states and control inputs.
This largely builds on our previous work [10], and we refer
the reader to that paper for more details.

A. State/Action Space
In our previous work [10], we found that a policy trained

with a robot-centric state representation had the best overall
performance. Thus, in this work, we use a robot-centric state
representation which consists of the robot joint angles θr, the
robot joint velocities θ̇r, the positions and velocities of the
robot-end effector in the world frame attached to the base
of the robot (pr,ṗr), and the positions and velocities of the
human hand in the robot end-effector frame (pr

h,ṗr
h).

xt = [θr, θ̇r,pr,p
r
h, ṗr, ṗ

r
h]t. (1)

The robot’s control input ut consists of the robot joint
torques τ : ut = τt.

52

2022 2nd International Conference on Robotics, Automation and Artificial Intelligence

978-1-6654-5944-0/22/$31.00 ©2022 IEEE

20
22

 2
nd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 R

ob
ot

ic
s, 

A
ut

om
at

io
n 

an
d 

A
rti

fic
ia

l I
nt

el
lig

en
ce

 (R
A

A
I)

 | 
97

8-
1-

66
54

-5
94

4-
0/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

R
A

A
I5

61
46

.2
02

2.
10

09
29

89

Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2023 at 14:02:29 UTC from IEEE Xplore.  Restrictions apply. 



B. Cost Function

We use a cumulative error cost function to describe the
reach-to-handover motion of a robot,

creach =
T∑

t=0

[
||pr − ph||2 + ln(||pr − ph||2 + αreach)

]
t
,

(2)
where T is the duration of each trial. This cost function

penalizes the robot for a spatial distance away from the
human’s hand, and it encourages precise placement owing to
its concave shape, as described in [7]. To be consistent with
prior works [7], [10], we set αreach = 10−5 in the evaluations
described in the next section.

C. Overview of the GPS-BADMM Algorithm

The GPS-BADMM algorithm is described in detail in [8],
and we provide its basic operation here for clarity.

GPS uses a set of linear Gaussian controllers (“local con-
trollers” henceforth), each being optimized via the iterative
Linear Quadratic Regulator (iLQR) algorithm [11] for a so-
called initial condition. In our case, the “initial conditions”
are handover location targets. The GPS algorithm alternates
between generating optimal trajectories for each initial con-
dition and training a global policy, which could be a deep
neural network, supervised by the local controllers. The global
policy’s role, in turn, is to improve the local controllers:
in each iteration, one of objectives of the local controller
optimization is to stay close to the global policy. The BADMM
variant of the GPS algorithm does not require knowledge of
the dynamics model as it utilizes the training data with locally
linear models to approximate the dynamics of the robot and
the environment.

III. IMPLEMENTATION OF GPS-BADMM ON A
FRANKA-EMIKA ROBOT

We train a collaborative robot, a Franka-Emika Panda
research robot (“Panda robot” henceforth), to perform reach-
to-handover motions with the GPS-BADMM algorithm1. This
is the same robot that we used in the simulation in our previous
work. The robot, shown in Fig. 2, is a 7 degrees-of-freedom
(DoF) robot arm with torque sensors at each joint, allowing
adjustable stiffness/compliance and torque control. We use an
OptiTrack motion tracking system to sense the positions of
the human’s hand and the robot’s end effector.

The robot is controlled via a distributed Robot Operating
System (ROS) network across three personal computers (PC)
as shown in Fig. 1: One PC runs the motion tracking software
and streams the motion tracking data on a local network.
The second PC converts the motion tracking data into the
relevant coordinate frames, computes the state representations
described in Section II-A, and runs the GPS training and
testing procedures to generate controls for the robot. These
are sent to a third PC, which is physically connected to the
Panda robot. This third PC runs a real-time kernel as required
by the robot manufacturer.

1The code is available at: https://github.com/alapkshirsagar/real-franka-gps

Fig. 1: The system setup includes a Panda robot (left), an Optitrack motion
capture system (top), and three PCs communicating through ROS: one
collecting motion tracking data (right), one responsible for RL (bottom center),
and one connected to the robot (left).

We build on the GPS-BADMM implementation of
White [12], which was designed for a Kuka LWR robot [13] in
the Gazebo simulation environment. White’s code, in turn, was
based on the GPS implementation of Finn [14], designed for
a Willow Garage PR2 robot [15]. In order to adapt the imple-
mentation of White [12] to the physical Panda robot, we had to
tune several parameters, including the initial gains, variances,
and stiffness parameters for the local iLQR controllers, and the
PID parameters used to command the robot back to its initial
position, after each trial. Tables I and II compare the values
used by previous implementations and the one presented in
this paper. For more details about these adaptations and pa-
rameters, we refer the reader to [16]. In general, we found that
the high gains used in previous implementations resulted in the
robot abruptly halting due to violations of joint trajectory or
Cartesian trajectory requirements2. These requirements consist
of safety limits on the robot’s joints’ positions, velocities,
and torques, as well as on the robot end-effector’s Cartesian
position, velocity, acceleration, and jerk. Such inbuilt limits are
common for robot arms designed for close-range human-robot
interaction.

TABLE I: Comparison of PID parameters of position controller for resetting
the LWR and the Panda robots.

Joint LWR Values [12] Panda Values
P I D Iclamp P I D Iclamp

1 2400 0 18 4 6 3 3 1
2 1200 0 20 4 6 3 3 1
3 1000 0 6 4 6 3 3 1
4 700 0 4 4 6 3 3 1
5 300 0 6 2 2.5 1 1 1
6 300 0 4 2 2.5 1 1 1
7 300 0 2 2 2.5 1 1 1

IV. EVALUATION OF GPS-BADMM ON A PHYSICAL
HANDOVER TASK

The goals of the current work are, first, to examine whether
our previous findings, which were performed only in sim-

2Franka-Emika Panda Specifications: https://frankaemika.github.io/docs/
control parameters.html
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TABLE II: Initial controller values of PR-2, LWR, and Panda robots.

Parameter PR-2 [14] LWR [12] Panda

Joint 1 Gain 3.09 24 0.1
Joint 2 Gain 1.08 12 0.1
Joint 3 Gain 0.393 10 0.1
Joint 4 Gain 0.674 7 0.1
Joint 5 Gain 0.111 3 0.001
Joint 6 Gain 0.152 3 0.001
Joint 7 Gain 0.098 6 0.001
Initial Variance 1 30 0.5
Stiffness 0.5 60 1.0
Stiffness Velocity 0.25 0.25 0.5

Fig. 2: The training and testing locations for 8 and 12 local controllers. The
squares represent the initial training locations, and the circles represent the
testing locations. This region was selected by trial and error to ensure that the
robot does not run into joint/Cartesian limits in the training/testing process.
For 12 local controllers, additional 4 training locations are located in a vertical
plane dividing the workspace.

Fig. 3: MuJoCo (Multi-Joint dynamics with Contact) simulation environment
for human handover tasks. A Panda robot (right) was trained in simulation on
reaching movements in a human-to-robot handover task. The human operator
is represented by a pseudo-robot (left).

ulation, replicate, and, second, to investigate the challenges
associated with the use of GPS in a physical Human-Robot
Interaction (HRI) setup. We do so in two stages: First, we
test whether policies learned in simulation can be used in a
physical setup (“Sim-to-Real Evaluation”), and second, we try
to use GPS to train policies using the physical robot (“Real-
to-Real Evaluation”).

A. Sim-to-Real Evaluation

We previously used GPS to train a robot reach-to-handover
in a simulation environment called MuJoCo (Multi-Joint dy-
namics with Contact) [17], as shown in Fig. 3. We trained
a Panda robot for the task with a pseudo-robot arm with
a mass rigidly attached to its end-effector, substituting the
human operator [10]. In the first experiment of the present
work, we ask whether the learned policy can be used on a
physical Panda robot.

We find that the policy trained in simulation fails to generate
correct trajectories on the physical Panda robot. This failure
is due to two main reasons: differences in model parameters
between the simulated and real robot and inbuilt safety con-
straints on the real robot.

While robot manufacturers provide some information about
their hardware and software, some of it is proprietary or
undocumented. As a result, simulation models almost always
have to make assumptions about some important dynamics
parameters. In this case, we used a MuJoCo model of the
Panda robot created with the robot’s meshes and specifications
from franka ros3. This model used the geometry provided
by the manufacturer and any existing dynamics parameters.
However, the manufacturer does not provide a damping factor

3Franka-Emika Panda MuJoCo Model: https://github.com/vikashplus/
franka sim
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for each joint, which was set arbitrarily, resulting in poor Sim-
to-Real dynamics transfer.

Furthermore, the Panda robot, like most human-
collaborative robots, has inbuilt safety constraints for
joint positions, velocities, and torques (see also: Section III).
In the Sim-to-Real transfer, many of the torques generated
by the GPS policy learned in simulation exceeded these
constraints.

It is worth noting here that the GPS algorithm does not
readily incorporate hard constraints. We tried to impose a
torque reduction in the simulation training by adding a penal-
ization term in the RL cost function for out-of-limit velocities
and out-of-limit torques. The torques were reduced slightly
but not enough to run the global policy on the real robot.
We also clamped the torques before the torques were sent to
the robot’s joints in MuJoCo. In that case, the robot could
not learn a handover trajectory at all and barely moved from
its initial position. In summary, due to the architecture of
GPS training, undisclosed robot parameters, and the fact that
human-collaborative robots have hard safety constraints, it
proved difficult to train in simulation and execute trajectories
on a physical robot.

B. Real-to-Real Evaluation

In the second stage of evaluation, we used GPS to directly
train a physical Panda robot to perform reaching motions
towards a human’s hand, and tested the learned global policy
for large variations in target locations and moving targets.
To reiterate, we identified large target variations and moving
targets as important characteristics of human-robot handovers
that were difficult for GPS to generalize over.

In the remaining text, we denote the Panda robot the
“learner”, and the human the “trainer” or “tester” for the
training and testing phase, respectively. Since it is not practical
to have a human perform exactly the same reaching motion in
all training iterations, we used recorded human hand motions
and replayed them to the robot via ROS.

The first research question examined in our study is the
spatial generalizability of the learned global policy, i.e., how
does the global policy perform for large spatial differences be-
tween training and testing locations. To answer this question,
we first tried to use the same training and testing locations
as our previous work [10]. However, we found that the Panda
robot ran into joint and Cartesian limit violations for those
training locations. We had to reduce the robot’s workspace by
trial-and-error. The final workspace used in our evaluation is
shown in Fig. 2. Replicating the conditions in the simulation
study, we compared two scenarios of local controllers: one
with 8 local controllers and another with 12 local controllers.
The global policy was trained with these local controllers for
11 iterations. The learner’s movement lasted for 5 seconds,
while the trainer/tester remained static. The test performance
was measured as the mean error between the learner’s gripper
position and the tester’s hand position at the last time step of
each trial.

The performance of the learned global policy is shown in
Fig. 4a. The black circle represents the learner’s gripper’s
initial position, and the black squares represent the training
locations. The colored circles indicate the error at the last time
step for each testing location. Mean error and its standard
deviation are shown in Fig. 5 (left). The mean testing error
(41.7mm) is about twice as large as the mean training error
(22.7mm). If our previous studies replicate, this test error can
be reduced by adding more local controllers in high error
regions. In the current study, we similarly find that adding
four additional local controllers in a vertical plane dividing the
workspace (Fig. 4b), reduced the mean and standard deviation
of the testing error. Trained on these 12 local controllers, the
mean error of the global policy was reduced to 29mm.

Next, we investigated how GPS performs when the target
is moving. First, we used the same global policy shown in
Fig. 4a (static training), but instead of a static tester, we used
a moving target, i.e., a recorded human reaching motion. The
final position of the motion was in a region similar to the
one shown in Fig. 2. Similar to our simulation studies, we
find that the robot generated highly inefficient trajectories, and
sometimes did not even execute these trajectories due to safety
constraint violations. A possible way to address this issue is to
train the controller with a moving target. To do so, we trained
the robot with recorded human reaching motions and tested the
policy on another set of recorded human reaching motions, as
well as on real-time human handovers. In the recorded human
reaching motions, the movement of the trainer/tester lasted 1
second, the peak speed was between 0.56m/s to 1.13m/s, and
the range of motion was between 0.38m to 0.55m. The learner
and the trainer/tester began the reaching motion at the same
time, and the learner’s motion lasted for 5 seconds. Fig. 4c
and 4d show the performance of the global policy for various
final positions of the tester’s gripper, defined as in previous
trials. Fig. 5 (right) shows error distributions.

For the global policy trained with a moving trainer and 8
local controllers (Fig. 4c), the mean testing error is 124.3mm.
Although the test errors are high as compared to the static
tester scenario, the robot stays within the joint and Cartesian
limits. Moreover, the variance over the target location is
high, and the worst-case error is 791.1mm, 442% higher than
the maximum error for the static tester condition (179mm).
Surprisingly, the tester’s motion for the worst-case error is
close to one of the training motions. This can be attributed to
the highly non-linear nature of the global policy. Interestingly,
GPS does not converge to a low training error for the moving
trainer scenario, averaging at 123.2mm which is 544% higher
than the training error for a static trainer 22.7mm. Training the
global policy with a moving trainer and 12 local controllers
(Fig. 4d) reduces the mean testing error to 37.9mm, which
is comparable to a static trainer. The worst-case error also
improves to 138.7 mm. Fig. 5 shows the distributions of
training and testing performance for each target scenario.
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(a) Static Trainer (8 Local Controllers), Static Tester (b) Static Trainer (12 Local Controllers), Static Tester

(c) Moving Trainer (8 Local Controllers), Moving Tester (d) Moving Trainer (12 Local Controllers), Moving Tester

Fig. 4: Global policy evaluation for different types of trainers and testers. The black circle represents the learner’s gripper’s initial position, and the black
squares represent the training locations. In the ‘static’ case, the trainer/tester stays in a fixed configuration. In the ‘moving’ case, the trainer/tester moves with
a human-like trajectory (that were recorded in advanced) and reaches the locations given by colored dots. Thus, each point corresponds to the final position
of the tester’s gripper in a trial. Error between the learner’s gripper position and the tester’s gripper position is calculated over the last time step of each trial.
Error values are clamped to the range [0.0, 0.1] for better visualization.

V. DISCUSSION AND CONCLUSION

Our work evaluates the feasibility of GPS as a learning
method for generating robot reaching motions for human-robot
handovers. To do so, we attempt to train a policy that is stable
over relatively large variations in target locations as well as
for moving targets. In the past, we evaluated these questions
only in simulation. This work trains and tests the approach on
a physical collaborative robot.

Attempting to transfer policies learned on a simulated robot
to the physical setup proved infeasible. The robot runs into
joint and Cartesian limits and halts almost immediately. This
can be attributed to the differences between the simulation
model’s dynamics and the real robot’s dynamics. Tuning the
simulation model dynamics parameters to match the real
robot’s parameters is often not possible owing to a large num-
ber of possibilities and undisclosed manufacturer parameter

settings. GPS has been shown to be robust to changes in the
robot’s dynamics within a certain range [10], but our findings
suggest that GPS is not robust enough to directly transfer
learning from simulation on a robot with unknown dynamics
to a real robot. That said, a higher-precision simulation model
might allow for better Sim-to-Real transfer and automatically
generating such a model could be a fruitful area of future
research.

Another hurdle for Sim-to-Real transfer of learned GPS
policies lies in the prevalence of built-in safety limits found in
human-collaborative robots, and the difficulty to impose such
limits in the GPS training phase.

When GPS is used to directly train the physical robot,
we find that the robot runs into these safety constraints
during the training phase. To avoid these violations, we have
to reduce the robot’s workspace by trial-and-error. In this
reduced workspace (Fig. 2), we find that most of our results

56
Authorized licensed use limited to: Cornell University Library. Downloaded on May 22,2023 at 14:02:29 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5: Distributions of training and testing performance for each target
scenario. Each point is the error between the learner’s gripper position and
the tester’s hand position at the last time step of a trial. Error bars show one
standard deviation around the mean of each distribution

from the simulation environment replicate. When the robot is
trained to reach only static target locations, the global policy
performance can be improved by adding local controllers in
regions with highest test errors (Fig. 4a compared to Fig. 4b).

When evaluating the global policy trained with static targets
on a moving test target, the robot generates highly inefficient
trajectories, sometimes resulting in halts due to joint limit
violations. To overcome this issue, we trained the global policy
with moving targets. Nevertheless, this solution is not free of
drawbacks. It successfully reduces the mean error and results
in more efficient and low-torque trajectories, but also results
in a high-variance (and therefore unreliable) global policy
with significantly larger worst-case errors. This issue can be
addressed by adding local controllers to the training phase,
improving the global policy performance (Fig. 4d). These
findings also support our previous findings in simulation,
namely that GPS works best with variable moving targets
when the space of possible end-positions is covered densely
with the training end-positions.

We hope that the presented study can contribute to the
understanding of the challenges and applicability of GPS in
a real-world HRI context. Though we evaluated GPS only
on one specific robot, the Franka-Emika Panda, our two key
findings are relevant for other HRI applications of GPS with
different robots. First, while GPS continues to be a promising
approach, to be useful for safety-critical scenarios around
humans, it needs to take into account the safety constraints
required in such contexts. Second, while GPS-BADMM is
theoretically agnostic to the robot’s dynamics, there is a need
for highly accurate dynamics models in order to allow training
in simulation, which may often be required. For example,
it would be infeasible to have a human repetitively provide
training data around a physical robot, requiring good Sim-to-
Real performance. These challenges provide a fertile ground
for future research.
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