
TYPE Perspective

PUBLISHED 09 November 2023

DOI 10.3389/fnbot.2023.1280341

OPEN ACCESS

EDITED BY

Alessandro Mengarelli,

Marche Polytechnic University, Italy

REVIEWED BY

Jiahao Chen,

Chinese Academy of Sciences (CAS), China

Wen Qi,

Polytechnic University of Milan, Italy

*CORRESPONDENCE

Shangding Gu

shangding.gu@tum.de

†These authors have contributed equally to this

work

RECEIVED 20 August 2023

ACCEPTED 18 October 2023

PUBLISHED 09 November 2023

CITATION

Gu S, Kshirsagar A, Du Y, Chen G, Peters J and

Knoll A (2023) A human-centered safe robot

reinforcement learning framework with

interactive behaviors.

Front. Neurorobot. 17:1280341.

doi: 10.3389/fnbot.2023.1280341

COPYRIGHT

© 2023 Gu, Kshirsagar, Du, Chen, Peters and

Knoll. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

A human-centered safe robot
reinforcement learning
framework with interactive
behaviors

Shangding Gu1*†, Alap Kshirsagar2†, Yali Du3†, Guang Chen4,

Jan Peters2 and Alois Knoll1

1Department of Computer Science, Technical University of Munich, Munich, Germany, 2Department of

Computer Science, Technical University of Darmstadt, Darmstadt, Germany, 3Department of

Informatics, King’s College London, London, United Kingdom, 4College of Electronic and Information

Engineering, Tongji University, Shanghai, China

Deployment of Reinforcement Learning (RL) algorithms for robotics applications

in the real world requires ensuring the safety of the robot and its environment.

Safe Robot RL (SRRL) is a crucial step toward achieving human-robot coexistence.

In this paper, we envision a human-centered SRRL framework consisting of

three stages: safe exploration, safety value alignment, and safe collaboration. We

examine the research gaps in these areas and propose to leverage interactive

behaviors for SRRL. Interactive behaviors enable bi-directional information transfer

between humans and robots, such as conversational robot ChatGPT. We argue

that interactive behaviors need further attention from the SRRL community. We

discuss four open challenges related to the robustness, e�ciency, transparency,

and adaptability of SRRL with interactive behaviors.
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interactive behaviors, safe exploration, value alignment, safe collaboration, bi-direction

information

1. Introduction

Deep learning has shown impressive performance in recent years (LeCun et al.,

2015; Wang et al., 2022; Liu et al., 2023; Zhao and Lv, 2023). By leveraging deep

learning, Reinforcement Learning (RL) has achieved remarkable successes inmany scenarios

and superhuman performance in some challenging tasks (Gu et al., 2022b, 2023),

e.g., autonomous driving (Gu et al., 2022a), recommender system (Zhao et al., 2021),

robotics (Brunke et al., 2021), games (Silver et al., 2018; Du et al., 2019; Han et al., 2019),

and finance (Tamar et al., 2012). Most RL methods aim to maximize reward performance

without considering safety constraints. However, safety is critical when deploying RL in real-

world applications, especially in robotics. In Robot RL (RRL), a robot interacts with static or

dynamic environments to learn the probability of better actions. When humans are also part

of the robot’s environment, ensuring their safety is crucial. This paper proposes a framework

to achieve Safe Robot RL (SRRL) by leveraging interactive behaviors.

Interactive behaviors are behaviors that can mutually influence the interacting

elements. Interaction is everywhere in human life (Kong et al., 2018), and agent-

environment interaction is the basis of RL (Sutton and Barto, 2018). When humans

and robots act in a shared environment, their actions can be influenced by each other

through interactive behaviors (Thomaz and Breazeal, 2006; Knox and Stone, 2009;

MacGlashan et al., 2017; Kazantzidis et al., 2022; Lou et al., 2023). For example, a

robot navigating in a public space can plan its path to avoid collisions with pedestrians
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and provide signals to pedestrians to move aside. The pedestrians

can also plan their path to avoid collisions with the robot and

provide signals to the robot to move aside. Figure 1 shows a

schematic of interactive behaviors consisting of three elements:

robots, environment, and humans. The outer loop consists of

feedback or signals from the robots to the humans and vice versa.

The two inner loops consist of actions from robots and humans in

the environment and feedback or rewards from the environment to

robots and humans. Here, we use the term “feedback” to mean any

type of information transfer between the two interacting elements.

Interactive behaviors can lead to better SRRL by enabling bi-

directional information transfer between the interacting elements.

It is a core technology to improve the dialogue performance of

a Large Language Model (LLM), e.g., ChatGPT (OpenAI, 2023)

by leveraging interactive behaviors. For example, in ChatGPT, on

the one hand, high-quality data from human feedback is collected

to design the reward model (Stiennon et al., 2020; Gao et al.,

2022). On the other hand, after having human feedback, the agent

model will be trained to align human values, and then give safe

feedback to humans. In most conventional SRRL approaches, there

is no human interaction, e.g., CPO (Achiam et al., 2017) and

ATACOM (Liu P. et al., 2022). With interactive behaviors, the

robot can learn about human behaviors and convey its features

and decision-making processes to humans. Those approaches that

consider the human-in-the-loop of the robot’s learning process do

not utilize feedback from the robot learner to the human teacher.

In this paper, we investigate interactive behaviors to achieve

three stages of human-centered SRRL: “safe exploration,”

“safety value alignment,” and “safe human-robot collaboration.”

In the “safe exploration” stage, the robot must explore the

unknown state space while preserving safety. In the “safety

value alignment” stage, the robot has to align its intentions

with the humans. Finally, in the “collaboration” stage,

the robot should contribute toward achieving shared goals

with humans.

2. Related work on safe
robot-reinforcement learning

Safe robot learning has received substantial attention over the

last few decades (Turchetta et al., 2019; Baumann et al., 2021;

Kroemer et al., 2021; Marco et al., 2021; Kaushik et al., 2022).

SRRL methods focus on robot action and state optimization and

modeling to ensure the safety of robot learning. For instance,

Gaussian models are used to model the safe state space (Akametalu

et al., 2014; Sui et al., 2015, 2018; Berkenkamp et al., 2016;

Turchetta et al., 2016; Wachi et al., 2018); formal methods are

leveraged to verify safe action and state space (Fulton and Platzer,

2018; Kochdumper et al., 2022; Yu et al., 2022); control theory

is applied to search safe action space (Chow et al., 2018, 2019;

Koller et al., 2018; Li and Belta, 2019; Marvi and Kiumarsi,

2021).

Akametalu et al. (2014) introduced a reachability-basedmethod

to learn system dynamics by using Gaussian models, in which

the agent can adaptively learn unknown system dynamics and

the maximal safe set. Berkenkamp et al. (2016) proposed a

region of attraction method to guarantee safe state space based

on Gaussian processes and Bayesian optimization. Although the

method provided a theoretical analysis for safe robot learning,

the assumptions in the study are quite strong and may not be

applicable in practical environments. Sui et al. (2015) present a

safe exploration method considering noise evaluations, in which

the safety is ensured with a high likelihood via a Gaussian

process confidence bound. Moreover, the sample complexity

and convergence of the method are analyzed, and real-world

applications, such as movie recommendations and therapeutic

spinal cord stimulation, are used to test how well the system

works. Nonetheless, they considered the safe exploration as a bandit

setting without any constraints (Turchetta et al., 2016). Turchetta

et al. (2016) developed an algorithm in which Gaussian processes

are leveraged to model the safe constraints. However, a set of

starting safe states is required from which the agent can begin

to explore in the work of Sui et al. (2015) and Turchetta et al.

(2016).

Some recent works have investigated the application of formal

methods for SRRL. Fulton and Platzer (2018) used formal

verification to check the correctness of the state transition model

and select safe action during RL. They allow unsafe actions if

the model is incorrect. Researchers have proposed three types

of provably safe RL methods for hard safety (Krasowski et al.,

2022): action mask, action replacement, and action projection.

Action masking approaches apply a safety layer to restrict the

agent’s actions to safe actions only (Krasowski et al., 2020).

Action replacement approaches replace unsafe actions with safe

actions (Hunt et al., 2021). Action projection methods project

the unsafe actions to close safe actions (Kochdumper et al.,

2022).

Control theory based SRRL approaches have utilized Lyapunov

functions and Model Predictive Control (MPC). Chow et al.

(2018, 2019) introduced Lyapunov functions based on discrete

and continuous control methods for the global safety of behavior

policy in RL. However, designing Lyapunov functions for different

environments may be difficult, and the requirement of a baseline

policy may be challenging to satisfy during real-world applications.

Koller et al. (2018) proposed an MPC based method to ensure

safe exploration using a statistical model of the system. Marvi and

Kiumarsi (2021) introduced a control barrier function method for

safe off-policy robot learning without needing to have a thorough

understanding of system dynamics, in which the cost functions are

augmented by a control barrier function.

Most of the above methods do not consider human-robot

interaction. There are some prior works that investigate human-

centered SRRL. For instance, Kazantzidis et al. (2022) introduced

a mechanism to ensure safety during exploration by harnessing

human preferences. Reddy et al. (2020) present a method to learn

themodel of human objectives by leveraging human feedback based

on hypothetical behaviors, and then the model can be used to

ensure the safety of robot learning. Saunders et al. (2018) try to

guarantee reinforcement learning safety by human interventions,

where human interventions are learned through a supervised

learning model. However, most of these works do not consider the

mutual influence of humans and robots in shared environments.

Thus, interactive behaviors between humans and robots that

leverage bi-directional information transfer, as shown in Figure 2,

still need further investigation to ensure SRRL.
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FIGURE 1

Schematic of interactive behaviors.

FIGURE 2

Three stages of human-centered SRRL. When a newborn infant enters a new environment, if it wants to survive in the new environment, it must first

learn about the environment via interactive behaviors (Safe Exploration), e.g., bi-directional feedback with its parents to learn how to walk. Then it

should find something helpful to survive better via interactive behaviors (Value Alignment), e.g., bi-directional feedback with its teachers to learn

human values. Finally, it has to collaborate with others to maximize the society’s reward via interactive behaviors (Safe Collaboration), e.g.,

bi-directional feedback with its collaborators to create new things.

3. Human-centered safe robot
reinforcement learning framework

Our proposed human-centered SRRL framework, as shown

in Figure 2, consists of three stages: safe exploration, safety value

alignment, and safe collaboration. When a robot enters a new

environment, it must explore it through safe action optimization

and state modeling. Then, the robot has to learn the safety

value alignment from the human-robot interaction. Finally, the

robot should be able to achieve safe collaboration with humans.

Interactive behaviors can help successfully achieve each of these

three stages.

3.1. Safe exploration

A robot should explore and find helpful information when

entering a new environment. During the exploration, the robot

must ensure its and the environment’s (including other agents’)

safety. Therefore, the first stage of human-centered SRRL, safe

exploration, focuses on exploring new environments and getting

information about the environment model through safe actions.

Uncertainty about the environment makes it difficult to determine

safe actions. For example, newborn infants sometimes end up

putting harmful objects in their mouths during oral exploration. It

is challenging to ensure safe actions using conventional RLmethods
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that learn new skills through trial and error. Especially with model-

free RL, a robot cannot avoid a destructive action unless it has

already tried it (or a similar action; Saunders et al., 2018).

Several methods have been proposed to address the challenge

of safe exploration for RL (Garcia and Fernández, 2012; Liu et al.,

2020; Bharadhwaj et al., 2021; Turchetta, 2021; Xiong and Diao,

2021; Liu P. et al., 2022; Liu Z. et al., 2022). For example, Garcia and

Fernández (2012) introduced a safe exploration method, in which

a predefined baseline policy is required, and the baseline policy

is approximated by behavioral cloning methods (Anderson et al.,

2000). Nonetheless, derived from the method, it would be hard to

search for the optimal exploration policy, and the capabilities of

the baseline policy could severely limit the method’s performance.

A conservative safety critic (Bharadhwaj et al., 2021) is proposed

to guarantee safety with high probability during robot exploration

processes. Garcia and Fernández (2012) introduced a smoother risk

function for safe robot exploration, which can achieve monotonic

reward improvement and ensure safety. This method needs a

predefined baseline policy to explore the safe space. Liu P. et al.

(2022) developed a safe exploration method for robot learning by

constructing a constrained manifold. This method can guarantee

safety for robot exploration using model-free RL. However, it

requires an accurate robot model or a perfect tracking controller,

which may hinder their method’s real-world applications.

Interactive behaviors can be used to transfer expert knowledge

from the human to the robot for safe exploration, just like

infants are safeguarded by their parents. Human intervention

has been investigated to avoid catastrophes in RL (Saunders

et al., 2018), and human feedback can be a reference for RL to

ensure robot safety during safe exploration (Frye and Feige, 2019).

However, the amount of human labor required for complex real-

world applications is prohibitive. The bi-directional feedback in

interactive behaviors can reduce the human-time cost during safe

exploration. On the one hand, the robot can actively query the

human and provide explanations of its behavior. On the other hand,

the human can also actively query the robot to learn about the

robot’s model, in addition to intervening for safe exploration.

3.2. Safety value alignment

In the second stage of safe robot learning, to train a robot to

perform a task safely, we need to evaluate how well it performs

in terms of its performance on safety. Whether it is a form of

costs, rewards, or labels, we need some form of signals to guide

the safety policies for robot learning. In some scenarios, the safety

performance can be evaluated automatically, such as bumping

into other vehicles of autonomous driving or breaking the arms

in robot manipulation. In these cases, training signals can be

straightforwardly defined for safe robot learning. Furthermore, to

facilitate the safe deployment of agents in real-world tasks, agents

also need to be compatible with users’ ethical judgment. Taking

automated vehicles as an example, should one autonomous vehicle

cut in line to maximize its reward in achieving a goal? Instead of

maximizing only the reward, the agents need the capacity to abide

by human moral values, which is essential but lacks effort.

Current robot learning algorithms rely on humans to state these

training signals (Gu et al., 2022b; Yuan et al., 2022) and assume

that humans understand the dangers. For example, imitation

learning inferences a reward function from human demonstrations;

preference-based learning guides the robot based on human

judgments. These classes of tasks involve “human” training signals.

The related problem of how to align has been discussed in earlier

literature (Christiano et al., 2018; Leike et al., 2018; Kazantzidis

et al., 2022; Liu R. et al., 2022) on how to align agents with user

intentions, in which meaningful training signals can be hard to

obtain, due to the unpredictable long-term effect of the behaviors,

or potential influence to other agents and environments in large

multi-agent systems.

Designing AI agents that can achieve arbitrary objectives, such

as minimizing some cost or penalties, can be deficient in that the

systems are intrinsically unpredictable and might result in negative

and irreversible outcomes for humans. In the context of interactive

learning, we consider how a robot can behave safely or align with

the user’s intentions whilst maintaining safety under interactive

behaviors with humans, and we frame this as the safety value

alignment problem: how to create robots that behave safely and

align with the human’s intentions?

Interactive behaviors allow agents to infer human values.

While agents infer human values from their feedback, bi-

directional feedback enables the agent to explain its decision-

making process. One early attempt (Yuan et al., 2022) studied

bi-directional communication in tabular-based navigation tasks

without considering more practical scenarios. The next step aims

to study the generalization of such results to large-scale problems

via more efficient algorithms.

3.3. Safe human-robot collaboration

The third stage of our safe-robot learning framework aims

to accomplish safe physical and cognitive collaboration between

robots and humans. Collaboration has enabled humans to

achieve great evolutionary success. Therefore, safe human-robot

collaboration is essential for successful human-robot co-existence.

The four main categories of human-robot collaboration

tasks explored in the literature are collaborative assembly,

object handling, object handovers, and collaborative

manufacturing (Semeraro et al., 2023). RL has been used for tuning

impedance controllers in physical human-robot collaboration tasks

such as lifting objects (Roveda et al., 2020) and guided trajectory

following (Modares et al., 2015). However, these works evaluated

the controllers in simplified scenarios and did not evaluate the

generalizability of the learned policies. RL has also been used for

performing robot-to-human object handovers (Kupcsik et al.,

2018) and human-to-robot object handovers (Chang et al., 2022).

Nevertheless, in some cases, the spatial generalizability of learned

policies is low (Kshirsagar et al., 2021). Ghadirzadeh et al. (2020)

used deep q-learning to generate proactive robot actions in a

human-robot collaborative packaging task. However, they only

evaluated a specific task scenario with a highly engineered reward

function. Also, they did not test the trained policy in the real world

and for different human participants than the training set.

Deep RL methods have been applied in real-world learning

scenarios for tasks like quadrupedal walking, grasping objects,

and varied manipulation skills (Ibarz et al., 2021). One of the
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desired features of these works is the ability to perform training

with little or no human involvement. However, scenarios of

human-robot collaboration typically involve multiple humans in

the robot’s learning process. Multi-agent RL methods such as self-

play or population-play do not perform very well with human

partners (Carroll et al., 2019). One proposed solution called

Fictitious Co-Play (FCP) involves training with a population of

self-play agents and their past checkpoints taken throughout

training (Strouse et al., 2021). However, FCP was evaluated only

in a virtual game environment.

Interactive RL (IRL) approaches involve a human-in-the-loop

to guide the robot’s RL process. IRL has been applied to various

human-computer interaction scenarios (Arzate Cruz and Igarashi,

2020). In addition, human social feedback in the form of evaluation,

advice, or instruction has also been utilized for several robot RL

tasks (Lin et al., 2020). However, more research is needed toward

utilizing IRL for safe human-robot collaboration. Also, while

some works have explored non-verbal cues to express the robot’s

uncertainty during the learning process (Matarese et al., 2021),

most existing IRL approaches do not involve feedback from robots

to humans. As depicted in Figure 2, evaluative feedback from

robots to humans could help improve human-robot collaboration.

4. Open challenges

In this section, we describe four key open challenges toward

utilizing interactive behaviors for SRRL. These open challenges are

related to the robustness, efficiency, transparency, and adaptability

of SRRL.

1. How can the robot learn robust behaviors with potential human

adversaries?

2. How to improve data efficiency of SRRL for effective utilization

of interactive behaviors?

3. How to design “transparent” user interfaces for interactive

behaviors?

4. How to enhance adaptability of SRRL for handling multiple

scenarios of interactive behaviors?

The first challenge is to achieve robust SRRL with respect

to unintentional or intentionally erroneous human conduct in

interactive behaviors. In existing SRRL methods, it is often

neglected that humans might misstate the safety signals. Also, due

to the potential involvement of multiple humans with different

values, robots need to learn to strike a balance between them. In

the extreme case, adversaries may intentionally state their signal

to mislead the training of robots to achieve malicious objectives.

Training robust agents against such malicious users needs further

research. Adversarial trainingmay be useful to ensure safety in such

scenarios (Meng et al., 2022). However, adversarial training is not

yet ready for real-world robot learning (Lechner et al., 2021).

The second challenge is to improve the data efficiency of

SRRL, given that real-world interactive behaviors are expensive.

Data efficiency can determine how quickly robots learn new skills

and adapt to new environments and how effectively interactive

behaviors can be utilized in the learning process. The success

of machine learning can be attributed to the availability of large

datasets and simulation environments. Therefore, one possible

solution to reduce the need for real-world interactive data is

to build large datasets or simulations of interactive behaviors.

For example, Lee et al. (2022) present a mixed reality (MR)

framework in which humans can interact with virtual robots in

virtual or augmented reality (VR/AR) environments. It can serve as

a platform for collecting data in various human-robot interaction

and collaboration scenarios. However, this framework suffers from

the limiting aspects of MR, such as the inconvenience of wearable

interfaces, motion sickness, and fatigue. Improvements in MR

technology will be crucial for the widespread use of such MR

environments.

The third challenge is to maintain transparency during SRRL.

Transparency is important for the effective utilization of interactive

behaviors. MacGlashan et al. (2017) provide empirical results to

demonstrate human feedback and robot policy can be interactively

influenced by each other, and indicate that the assumption is

that the feedback from a human is independent of the robot’s

current policy, may be incorrect. Transparency can be achieved

in the context of interactive behaviors by explaining the robot’s

decision-making process to the human and exposing the robot’s

internal state. Several solutions have been proposed to improve

the explainability of robot RL (Hayes and Shah, 2017; MacGlashan

et al., 2017; van der Waa et al., 2018; Likmeta et al., 2020;

Atakishiyev et al., 2021a,b; Matarese et al., 2021). For example,

Likmeta et al. (2020) introduced an interpretable rule-based

controller for the transparency of RL in transportation applications.

Nonetheless, the policy that the method provides may be too

conservative, since it severely depends on the restricted rules.

Matarese et al. (2021) present a method to improve robot behaviors’

transparency to human users by leveraging emotional-behavior

feedback based on robot learning progress. However, further

research is needed toward communicating the robot’s internal state.

Non-verbal communication in the form of gazes and gestures

can be leveraged to communicate the robot’s internal state. For

example, if the robot is uncertain about its decisions, it can show

hesitation gestures.

The fourth challenge is to enhance the adaptability of

safe robot learning to handle a variety of settings involving

interactive behaviors. Particularly, a robot can encounter different

environments. For instance, completely trusted environments,

in which the environment information is known and the

environment is stable; Unstable environments for which

environment information is known; Uncertain environments,

where the information about the environment is uncertain and

partial; Unknown environments, in which the environment

information is completely unknown. Safety can be ensured in

trusted environments, e.g., robots can safely grasp an object in

a static environment. However, in “3U” environments, ensuring

SRRL is challenging. For instance, during sim-to-real transfer,

the discrepancies between the simulation models and real-world

models are inevitable (Mitsch and Platzer, 2016), and the real-

world environments are replete with uncertain disturbances and

unknown information, e.g., in a multi-agent system, guaranteeing

each agent’s safety may be difficult. Some works provide a potential

direction to ensure multi-robot learning safety in unstable

environments, for example, Multi-Agent Constrained Policy

Optimization and Multi-Agent Proximal Policy Optimization

Lagrangian (Gu et al., 2023). Nevertheless, the exploration
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involving interactive behaviors between agents and environments

can be intricate and time-intensive. The incorporation of

human insights and value alignment in the exploratory phase is

instrumental in enhancing the adaptability of these agents within

a human-in-the-loop learning system. As we envisage future

trajectories of research, a salient focus is the attainment of SRRL

characterized by interactive behaviors in “3U” environments. In

this vein, game theory (Fudenberg and Tirole, 1991) emerges as

a pivotal tool, offering nuanced strategies and frameworks for

optimizing agent-environment interactions. Concurrently, the

integration of advancements in cognitive science is anticipated

to play a quintessential role. Specific areas of interest encompass

the optimization of information management protocols between

humans and robotic agents and the augmentation of robotic

cognitive faculties through the effective utilization of perception

devices. These integrated approaches aim to engender a more

seamless, efficient, and adaptive interaction paradigm, catalyzing

enhanced performance and adaptability in complex, dynamic

environments.

However, the exploration with interactive behaviors between

agents and environments may be time-consuming. Involving

human knowledge and value alignment in the exploration can

improve its adaptability in a human-loop learning system.

Future work to achieve SRRL with interactive behaviors in “3U”

environments can leverage game theory (Fudenberg and Tirole,

1991) and advances in cognitive science, for instance, how to

manage the information between humans and robots, and robots

how to leverage perception devices to enhance its cognitive abilities.

5. Conclusion

Robots need to ensure safety while leveraging RL in human

environments. However, conventional SRRL algorithms do

not consider the mutual influence between the robot and

the human. In this paper, we proposed a human-centered

SRRL framework consisting of three stages: safe exploration,

value alignment, and human-robot collaboration. We

discussed how these stages can leverage mutual influence

or bidirectional information transfer between the robot and

the human through interactive behaviors. We also described

four key open challenges related to the robustness, efficiency,

transparency, and adaptability of SRRL for effective utilization of

interactive behaviors.
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