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Abstract—Shared dynamics models are important for captur-
ing the complexity and variability inherent in Human-Robot
Interaction (HRI). Therefore, learning such shared dynamics
models can enhance coordination and adaptability to enable
successful reactive interactions with a human partner. In this
work, we propose a novel approach for learning a shared
latent space representation for HRIs from demonstrations in a
Mixture of Experts fashion for reactively generating robot actions
from human observations. We train a Variational Autoencoder
(VAE) to learn robot motions regularized using an informative
latent space prior that captures the multimodality of the human
observations via a Mixture Density Network (MDN). We show
how our formulation derives from a Gaussian Mixture Regression
formulation that is typically used approaches for learning HRI
from demonstrations such as using an HMM/GMM for learning
a joint distribution over the actions of the human and the robot.
We further incorporate an additional regularization to prevent
“mode collapse”, a common phenomenon when using latent
space mixture models with VAEs. We find that our approach
of using an informative MDN prior from human observations
for a VAE generates more accurate robot motions compared to
previous HMM-based or recurrent approaches of learning shared
latent representations, which we validate on various HRI datasets
involving interactions such as handshakes, fistbumps, waving,
and handovers. Further experiments in a real-world human-
to-robot handover scenario show the efficacy of our approach
for generating successful interactions with four different human
interaction partners.

Index Terms—Physical Human-Robot Interaction, Imitation
Learning, Learning from Demonstration

I. INTRODUCTION

ENSURING a timely response while performing an in-
teraction can enable a feeling of connectedness to ones

partner [1]. Therefore, learning to generate response motions
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Fig. 1: Target poses generated in a reactive manner by the mixture
of policies learned by MoVEInt for a Handshake interaction with the
humanoid robot Pepper. MoVEInt generates multiple policies (shown
in green, magenta, and orange) based on human observations which
are combined to generate suitable robot motions.

for a robot in a timely manner for Human-Robot Interaction
(HRI) is an important aspect of the interaction. One way to
do so is by learning a shared representation space between
the human and the robot [2]–[8]. An important aspect of
such approaches, for learning HRI from demonstrations, is
accurately capturing the multimodality of the underlying data
to effectively capture the underlying skills and accurately
generate response motions.

Vogt et al. [7] showed the use of shared latent spaces in an
Imitation Learning (IL) approach by decomposing interactions
into multiple segments in a lower dimensional space with an
underlying Gaussian Mixture Model (GMM) and learning the
sequence of key poses using a Hidden Markov Model (HMM)
to define the progression of an interaction. In our previous
work, MILD [5], [6], we explore learning a shared latent
space model using a Variational Autoencoder (VAE) wherein
we learn a joint distribution over the trajectories of both the
human and the robot using an HMM with underlying Gaussian
States to represent the multimodality of the demonstrations.
Rather than extracting key poses as in [7], we generate the
robot’s motion using Gaussian Mixture Regression (GMR)
from the underlying HMM based on the human’s observations
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in a reactive manner. In doing so, we achieve better accuracy
than using a recurrent representation of the shared latent
dynamics [2].

Generative approaches have been used to jointly learn
human and robot policies for collaborative tasks [8]–[10] and
discover different underlying latent “strategies” of the human
but only for a given task. In our work, we further explore how
underlying latent strategies can be learned from different tasks
in a dataset rather than just a single task by using a mixture
distribution to predict different latent policies, which are then
combined in a Mixture of Experts fashion. An example of
this can be seen in Fig. 1, where we show a handshake
interaction with the Pepper robot. Trained on a dataset of
different physical interactions like waving, handshakes and
fistbumps, we see the different policies that get predicted (the
reconstructions of which are shown by the different colored
arms of Pepper) which are then combined in the latent space
yielding a suitable response motion.

To learn multiple latent policies and effectively combine
them, we employ Mixture Density Networks (MDNs) [11]
to capture the multimodality of the demonstrations. MDNs
predict a mixture of Gaussians and the corresponding mixture
coefficients yielding a multimodal prediction, rather than a
unimodal distribution or a single output. MDN policy rep-
resentations have been widely used in Imitation Learning
and Reinforcement Learning (RL) on a variety of tasks such
as autonomous driving [12], [13], entropy regularization for
imitation learning [14], adapting to multiple goals [15], in-
corporating human intentions for robot tasks [16], predicting
gaze behaviors for robot manipulation [17] or more generally
as improved attention mechanisms [18], [19] or as forward
models of the environment [20]–[23].

With these key ideas for learning shared multimodal latent
policy representations for HRI, the main contributions of
our paper are as follows. We propose “MoVEInt”, a novel
framework that employs a Mixture of Variational Experts
for learning Human-Robot Interactions from demonstrations
through a shared latent representation of a human and a robot.
We learn latent space policies in a Mixture of Experts fashion
via a Mixture Density Network (MDN) to encode the latent
trajectory of a human partner, regularize the robot embeddings,
and subsequently, predict the robot motions reactively. We
show how our proposed formulation extends from Gaussian
Mixture Regression (GMR) which is typically used in HMM-
based approaches for learning HRI from demonstrations. We
leverage the function approximation powers of Neural Net-
works to simplify the GMR formulation to a linear Mixture
of Gaussian formulation.

Through our experiments, we see that our approach success-
fully captures the best of recurrent, multi-modal, and reactive
representations for learning short-horizon Human-Robot Inter-
actions from demonstrations. We find that MoVEInt generates
highly accurate robot behaviors without explicit action labels,
which is more natural as humans also internally infer what our
interaction partner is doing and adapt to it without explicitly
communicating the action being done. We validate our predic-
tive performance on a variety of physical HRI scenarios such
as handshakes, fistbumps, and robot-to-human handovers. We

further demonstrate the efficacy of MoVEInt on a real-world
interaction scenario for bimanual (dual-arm) robot-to-human
handovers.

II. FOUNDATIONS

A. Variational Autoencoders

Variational Autoencoders (VAEs) [24], [25] are a class of
neural networks that learn to reconstruct inputs via latent
representations in an unsupervised, probabilistic way. The
inputs “x” are encoded into lower dimensional latent em-
beddings “z” that a decoder uses to reconstruct the input.
A prior distribution, typically a standard normal distribution
p(z) = N (z;0, I), is enforced over the latent space during
training. The goal is to estimate the true posterior p(z|x) using
a neural network q(z|x), which is trained by minimizing the
Kullback-Leibler (KL) divergence between them

KL(q(z|x)||p(z|x)) = Eq[log
q(z|x)
p(x, z)

] + log p(x) (1)

which can be re-written as

log p(x) = KL(q(z|x)||p(z|x)) + Eq[log
p(x, z)

q(z|x) ]. (2)

The KL divergence is always non-negative; therefore, the
second term in Eq. 2 acts as a lower bound. Maximizing
it would effectively maximize the log-likelihood of the data
distribution or evidence and is hence called the Evidence
Lower Bound (ELBO), which can be written as

Eq[log
p(x, z)

q(z|x) ] = Eq log p(x|z)−KL(q(z|x)||p(z)) (3)

The first term aims to reconstruct the input via samples
decoded from the posterior. The second term is the KL diver-
gence between the prior and the posterior, which regularizes
the learning. Further information can be found in [24]–[26].

B. Mixture Density Networks

Mixture Density Networks (MDNs) [11] is a probabilistic
neural network architecture that encapsulates the representa-
tion powers of neural networks with the modular advantages
that come with Gaussian Mixture Models (GMMs). MDNs
parameterize a typical supervised regression problem of pre-
dicting an output distribution p(y|x) = N (y|µ(x),σ2(x)))
as a multimodal distribution by predicting a set of means and
variances (µi(x),σ

2
i (x)) corresponding to the mixture distri-

bution along with the mixture coefficients αi(x) corresponding
to the relative weights of the mixture distributions.

III. MIXTURE OF VARIATIONAL EXPERTS FOR LEARNING
HUMAN-ROBOT INTERACTIONS FROM DEMONSTRATIONS

In this section, we present MoVEInt, a novel framework that
learns latent space policies in a Mixture of Experts fashion for
modeling the shared dynamics of a human and a robot in HRI
tasks. This process can be seen in Fig. 2. We aim to model
the dynamics of HRI tasks via shared latent representations of
a human and a robot in a way that captures the multimodality
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Fig. 2: Overview of our approach “MoVEInt”. We train a reactive policy using a Mixture Density Network (MDN) to predict latent space
robot actions from human observations. The MDN policy is used not just for reactively generating the robot’s actions, but also to regularize
a VAE that learns a latent representation of the robot’s actions. This regularization ensures that the learned robot representation matches the
predicted MDN policy and also ensures that the robot VAE learns to decode samples from the MDN policy.

of the demonstrations and subsequently predicts the robot’s
motions in a reactive manner. To do so, we use an MDN that
takes the human observations as input and predicts multiple
latent policies, thereby enabling a multimodal output, and
subsequently, the relative weights for each policy so that they
can be effectively combined. For learning a shared latent
representation between the human and the robot, we train a
VAE over the robot motions and regularize the VAE with the
predicted policy from the MDN, thereby learning the robot
embeddings and the subsequent human-conditioned policy
predictions in a cohesive manner.

We motivate the use of MDNs in Sec. III-A by showing
the equivalence of MDNs with Gaussian Mixture Regression
(GMR) for HRI. We then explain learning the robot motion
embeddings (Sec. III-B), and then show how to train reactive
policies for HRI (Sec. III-C). We denote the human variables
in red with the superscript h and the robot variables in blue
with the superscript r.

A. GMR-based Interaction Dynamics with MDNs
Learning a joint distribution over the degrees of freedom

of a human and a robot has been widely used in learning
HRI from demonstrations [5], [6], [27]–[31]. With a joint
distribution, GMR provides a mathematically sound formu-
lation of predicting the conditional distribution of the robot
actions. When using a Mixture of N Gaussian components
{µi,Σi} that model a joint distribution of the Human and
Robot trajectories, the distribution can be decomposed into
the marginals for the human and the robot

µi =

[
µh

i

µr
i

]
;Σi =

[
Σhh

i Σhr
i

Σrh
i Σrr

i

]
(4)

In such a formulation, during test time, the robot motions can
be generated reactively by conditioning the distribution using
Gaussian Mixture Regression (GMR) [27], [32]1

Ki = Σrh
i (Σhh

i )−1

µ̂r
i = µr

i +Ki(z
h
t − µh

i )

µ̂r
t =

N∑
i=1

αi(z
h
t )µ̂

r
i

Σ̂
r

i = Σrr
i −KiΣ

hr
i + (µ̂r

i − µ̂r
t )(µ̂

r
i − µ̂r

t )
T

Σ̂
r

t =

N∑
i=1

αi(z
h
t )Σ̂

r

i

p(zr
t |zh

t ) = N (zr
t |µ̂r

t , Σ̂
r

t )

(5)

where αi(z
h
t ) is the relative weight of each component.

Revisiting Eq. 5, given the linear dependence of µ̂r
i on zh

t ,
we can therefore consider µ̂r

i as a direct output of a neural
network. Although the covariance matrix has a quadratic rela-
tionship with zh

t , considering Neural Networks are powerful
function approximations, we assume that our network can
adequately approximate a diagonalized form of the covariance
matrices Σ̂

r

i [15], [33]. To consider the temporal aspect of
learning such trajectories from demonstrations, rather than
using the Mixture Model coefficients, αi(z

h
t ) can be approx-

imated in a temporal manner using Hidden Markov Models
(HMMs) [27] αi(z

h
t ) = N (zh

t ;µi,Σi)
∑N

j=1 αj(zt−1)Tj,i
where the parameters (µi,Σi, Tj,i) are the means and co-

1The covariance in the GMR Formulation in [27], which is derived
from [32], can be obtained by simplifying Eq. 5 as shown in the appendix.
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variances of the underlying Gaussian states and the transition
probabilities between the states respectively.

Given that there exist parallels between HMMs and
RNNs [34]–[36] and to capture the recurrence in predicting
αi(z

h
t ), we use a recurrent layer for predicting the mixing

coefficients. Using the predictions of the mixture model pa-
rameters (µr

i (x
h
t ),σ

r
i (x

h
t )

2) and coefficients αi(x
h
t ) from the

MDN 2, we can re-write Eq. 5 as

µ̂r
t =

N∑
i=1

αi(x
h
t )µ

r
i (x

h
t )

(σ̂r
t )

2 =

N∑
i=1

αi(x
h
t )σ

r
i (x

h
t )

2

p(zr
t |xh

t ) = N (zr
t |µ̂r

t , (σ̂
r
t )

2)

(6)

which is then used as a prior for regularizing the VAE and
training the decoder to reconstruct latent samples obtained
after observing the human partner.

B. Robot Motion Embeddings

To learn a meaningful representation of the robot’s actions,
we train a VAE to reconstruct the robot’s actions at each
timestep. Typically, in VAEs, a standard normal distribution
is used as the latent space prior p(z) = N (0, I). Rather
than forcing an uninformative standard normal prior as in
Eq. 3, we use the reactive policy predicted from the human
observations by the MDN (Eq. 6) to regularize the VAE’s
posterior KL(q(zr

t |xr
t )||p(zr

t |xh
t )), thereby learning a task-

oriented latent space that is in line with the interaction dy-
namics. Our ELBO for training the robot VAE can be written
as

ELBOr
t = Eq(zr

t |xr
t )
[log p(xr

t |zr
t )]

− βKL(q(zr
t |xr

t )||p(zr
t |xh

t ))
(7)

Where β is a relative weight used to ensure numerical
stability between the KL divergence term and the image
reconstruction term [26].

C. Reactive Motion Generation

We aim to learn a policy for reactively generating the robot’s
latent trajectory based on human observations p(zr

t |xh
t ). We

do so in a Behavior Cloning Paradigm by maximizing the
probability of the observed trajectories w.r.t. the current pol-
icy LBC

t = −Ezr
t∼p(zr

t |xh
t )
p(xr

t |zr
t ) wherein we first draw

samples from the current policy zr
t ∼ p(zr

t |xh
t ) which we

then reconstruct p(xr
t |zr

t ), thereby enabling the decoder to
reconstruct latent samples obtained after observing the human,
as done during test time.

However, as highlighted in [15], MDN policy represen-
tations are prone to mode collapses. Therefore, to ensure
adequate separation between the modes so that we can learn
a diverse range of actions, we employ a contrastive loss at
each timestep. The contrastive loss pushes the means of each

2Since the relation between xh
t and zh

t is deterministic, for ease of notation,
we show the prediction of the MDN components with xh

t

mixture component further away, while maintaining temporal
similarity by pushing embeddings that are closer in time nearer
to each other. Further, as done in [15], we add entropy cost to
ensure a balanced prediction of the mixture coefficients. Our
separation loss can be written as

Lsep
t =

N−1∑
i=1

N∑
j=i+1

exp(−∥µr
i (x

h
t )− µr

j(x
h
t )∥2)︸ ︷︷ ︸

separation of means

+ 1− 1

N

N∑
i=1

exp(−∥µr
i (x

h
t )− µr

i (x
h
t−1)∥2)︸ ︷︷ ︸

temporal closeness

+

N∑
i=1

αi(x
h
t ) lnαi(x

h
t )︸ ︷︷ ︸

entropy cost

(8)

Our final loss consists of the Behavior Cloning loss, the
ELBO of the robot VAE, and the separation loss

T∑
t=1

[
LBC
t − ELBOr

t + βLsep
t

]
(9)

where β is the same KL weight factor used in Eq. 7. Our
overall training procedure is shown in Alg. 1.

Algorithm 1: Learning a Reactive Latent Policy for
Human-Robot Interaction

Data: A set of human and robot trajectories
X = {Xh,Xr}

Result: MDN Policy Network, Robot VAE
while not converged do

for xh
1:T ,x

r
1:T ∈ X do

Compute the MDN policy p(zr
t |xh

t ) (Eq. 6)
Compute the robot VAE posterior p(zr

t |xr
t ) (Eq. 7)

Reconstruct samples from p(zr
t |xh

t ) and p(zr
t |xr

t )
Minimize the loss in Eq. 9 to update the network

end
end

During test time, given human observations xh
t , we compute

the latent policy from the MDN zr
t = p(zr

t |xh
t ) which is

then decoded to obtain the robot action p(xr
t |zr

t ).

IV. EXPERIMENTS AND RESULTS

In this section, we first explain the datasets we use
(Sec. IV-A), then we highlight the implementation details
(Sec. IV-B), and finally present our results (Sec. IV-C).

A. Dataset

1) Bütepage et al.: [2] record HHI and HRI demonstrations
of 4 interactions: Waving, Handshaking, and two kinds of fist
bumps. The first fistbump, called “Rocket Fistbump”, involves
bumping fists at a low level and then raising them upwards
while maintaining contact with each other. The second is
called “Parachute Fistbump” in which partners bump their fists
at a high level and bring them down while simultaneously
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oscillating the hands sideways, while in contact with each
other. They additionally record demonstrations of these actions
with a human partner interacting with an ABB YuMi-IRB
14000 robot controlled via kinesthetic teaching. We call this
scenario as “HRI-Yumi”.

We further adapt the HHI demonstrations for the humanoid
robot Pepper [37] by extracting the joint angles from one of the
human partner’s skeletons from the HHI data for the Pepper
robot using the similarities in DoFs between a human and
Pepper [38], [39], which we denote this as “HRI-Pepper”.
Given the smaller number of trajectories in the HRI-Yumi
scenario, we initialize the network with the weights from the
model trained for the HHI scenario.

2) Nuitrack Skeleton Interaction Dataset: (NuiSI) [6] is a
dataset that we collected ourselves of the same 4 interactions
as in [2]. The skeleton data of two human partners interact-
ing with one another is recorded using two Intel Realsense
D435 cameras (one recording each human partner). We use
Nuitrack [40] for tracking the upper body skeleton joints in
each frame at 30Hz. As done with [2], we show results on both
the HHI data as well as on the joint angles extracted for the
Pepper robot from the skeleton trajectories for an HRI-Pepper
scenario.

3) Human-Human Object Handovers Dataset: [41] is a
dataset consisting of 12 pairs of participants performing object
handovers with various objects, with each partner taking the
role of the giver and the receiver, leading to 24 pairs of
handover partners. The dataset consists of both Unimanual
(single-arm) and Bimanual (dual-arm) handovers tracked using
motion capture at 120Hz, which we downsample to 30Hz.
We explore a Robot-to-Human handover scenario and use
the giver’s observations corresponding to the robot and the
receiver’s observations corresponding to the human.

Dataset Downsampled No. of Trajectories
FPS (Hz) Training Testing

HHI, HRI-Pepper [2] 20 149 32
HRI-Yumi [2] 20 32 9

HHI, HRI-Pepper (NuiSI [6]) 30 33 11
HHI-Handovers [41] 30 168 24

TABLE I: Statistics of the different datasets used.

B. Implementation Details

After downsampling the data to the frequencies mentioned
in Table I, we use a time window of observations as the input
for a given timestep, similar to [2]. We use the 3D positions
and the velocities (represented as position deltas) of the right
arm joints (shoulder, elbow, and wrist), with the origin at the
shoulder, leading to an input size of 90 dimensions (5x3x6: 5
timesteps, 3 joints, 6 dimensions) for a human partner. For the
HHI-Handover scenario, we use both the left and right arm
data (180 dimensions). For the HRI-Pepper and HRI-Yumi
scenarios, we use a similar window of joint angles, leading to
an input size of 20 dimensions (5x4) for the 4 joint angles of
Pepper’s right arm and an input size of 35 dimensions (5x7) for
the 7 joint angles of Yumi’s right arm. The reconstruction loss
for the VAE and Behavior Cloning are calculated by decoding
samples drawn from the respective distributions in a Monte
Carlo fashion.

For the dataset from [2] and the NuiSI dataset [6], we use
a VAE with 2 hidden layers each in the encoder and decoder
with a dimensionality of (40, 20) and (20, 40) respectively,
with Leaky ReLU activations and a 5D latent space. For the
VAE posterior and the MDN outputs, we predict the mean
and the log of the standard deviation (logstd). We add a
regularization of 10−6 to the standard deviation. The MDN
has a similar structure as the VAE encoder but predicts 3
different means and logstds. For the mixture coefficients αi,
to enable a recurrent nature of the predictions, the output of
the MDN encoder is passed to a single-layer Gated Recurrent
Unit (GRU) whose outputs are then passed through a linear
layer followed by a softmax layer. For the NuiSI dataset, we
initialize the model with the pre-trained weights trained on the
dataset in [2]. For the Handover dataset [41], we use double
the number of states in each layer, namely 80 and 40 hidden
states and a 10D latent space.

C. Reactive Motion Generation Results

To show the advantage of our approach, we compare
MoVEInt with Bütepage et al. [2], who use an LSTM-
based approach as a latent regularization for reactive motion
generation, which is close to a unimodal version of our
approach. Further, we compare MoVEInt to MILD [6] which
uses HMMs to capture the multimodal latent dynamics of
interactive tasks. The efficacy of MoVEInt can be seen via
the low mean squared error of the predicted robot motions
(Table II).

We perform better than both MILD [6] and Bütepage et
al. [2] on almost all interaction scenarios. We additionally
want to highlight that on the HRI-Pepper scenarios, unlike
MILD [6] and Bütepage et al. [2] where the pre-trained model
from the HHI scenario is used, we train our model completely
from scratch and still achieve better performance. Moreover,
it is worth noting that both [2] and MILD are trained in a
partially supervised manner using the interaction labels. In [2],
a one-hot label denoting the interaction being performed is
given as an input to the network for generalizing to different
interactions, whereas in MILD, a separate HMM is trained
for each interaction. In contrast, MoVEInt is trained on all
the tasks in a given dataset without any labels in a purely
unsupervised manner and still achieves competitive results on
the different datasets.

We additionally show some quantitative results of MoVEInt.
We train a Handover model with just the hand trajectories
whose predictions are used for reactive motion generation
on a Bimanual Franka Emika Panda robot setup, “Kobo”, as
shown in Fig. 3. Some additional examples of the trajectories
generated by MoVEInt for bimanual and unimanual handovers
from the HHI-Handovers dataset [41] are shown in Fig. 4a
and 4b respectively. Since MoVEInt is trained on all the
interactions in a corresponding dataset, which, when coupled
with the separation loss, learns a diverse and widespread set
of components that cover the various demonstrations, as can
be seen by the reconstruction of the individual components.
Combining the components in the latent space subsequently
leads to an accurate and suitable motion generated reactively
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Dataset (units) Action MILD [6] Bütepage et al. [2] MoVEInt

HHI
(Bütepage et al. [2])

(cm)

Hand Wave 0.788 ± 1.226 4.121 ± 2.252 0.448 ± 0.630
Handshake 1.654 ± 1.549 1.181 ± 0.859 0.196 ± 0.153

Rocket Fistbump 0.370 ± 0.682 0.544 ± 1.249 0.123 ± 0.175
Parachute Fistbump 0.537 ± 0.579 0.977 ± 1.141 0.314 ± 0.348

HRI-Pepper
(Bütepage et al. [2])

(rad)

Hand Wave 0.103 ± 0.103 0.664 ± 0.277 0.087 ± 0.089
Handshake 0.056 ± 0.041 0.184 ± 0.141 0.015 ± 0.014

Rocket Fistbump 0.018 ± 0.035 0.033 ± 0.045 0.007 ± 0.015
Parachute Fistbump 0.088 ± 0.148 0.189 ± 0.196 0.048 ± 0.112

HRI-Yumi
(Bütepage et al. [2])

(rad)

Hand Wave 1.033 ± 1.204 0.225 ± 0.302 0.147 ± 0.072
Handshake 0.068 ± 0.052 0.133 ± 0.214 0.057 ± 0.044

Rocket Fistbump 0.128 ± 0.071 0.147 ± 0.119 0.093 ± 0.045
Parachute Fistbump 0.028 ± 0.034 0.181 ± 0.155 0.081 ± 0.082

HHI
(NuiSI [6])

(cm)

Hand Wave 0.408 ± 0.538 3.168 ± 3.392 0.298 ± 0.274
Handshake 0.311 ± 0.259 1.489 ± 3.327 0.149 ± 0.120

Rocket Fistbump 1.142 ± 1.375 3.576 ± 3.082 0.673 ± 0.679
Parachute Fistbump 0.453 ± 0.578 2.008 ± 2.024 0.291 ± 0.199

HRI-Pepper
(NuiSI [6])

(rad)

Hand Wave 0.046 ± 0.059 0.057 ± 0.093 0.044 ± 0.048
Handshake 0.020 ± 0.014 0.083 ± 0.075 0.011 ± 0.008

Rocket Fistbump 0.077 ± 0.067 0.101 ± 0.086 0.045 ± 0.045
Parachute Fistbump 0.022 ± 0.027 0.049 ± 0.040 0.017 ± 0.014

HHI-Handovers Unimanual 0.441 ± 0.280 1.133 ± 0.721 0.441 ± 0.221
(Kshirsagar et al. [41]) (cm) Bimanual 0.869 ± 0.964 0.990 ± 0.764 0.685 ± 0.643

TABLE II: Prediction MSE for robot trajectories after observing the human partner averaged over all joints and timesteps. Results for the
HHI scenarios are in cm and for the HRI scenarios are in radians. (Lower is better)

(shown in blue). For further examples, please refer to our
supplementary video.

D. User study

To understand the effectiveness of our approach in the
real world, we perform a feasibility study as a proof-of-
concept with five users who perform bimanual robot-to-human
handovers with the Kobo robot. We evaluate the ability of
our approach to successfully generate a handover motion
with three different objects where each participant interacts
with the robot five times for each object (a total of 15 runs
per participant). To maintain the object-centric nature of the
interaction, we use a controller that tracks the mid-point of
both end-effectors, thereby resembling tracking the object’s
trajectory. This study was approved by the Ethics Commission
at TU Darmstadt (Application EK 20/2023). For the study,
we modify the Handovers dataset [41] such that the giver’s
trajectories fall within the task space limits of the Kobo
robot. We train a separate model to use only the receiver’s
hand trajectories and subsequently predict the end-effector
trajectory for the robot. This is given to an Object-centric
Inverse Kinematics controller that tracks the motion of the
mid-point between the end-effectors.

As shown in Table III, our approach can generate successful
handover trajectories for different users and different objects.
We observed some failure cases due to sudden jumps in
the predicted robot motions resulting from inaccuracies in
perceiving the human, which would overshoot the robot’s
dynamic limits. However, this failure could be avoided by
incorporating additional filters over the input and output data
to MoVEInt. Some failures occurred because the object did
not reach the exact vicinity of the human’s hand location.
This failure could be avoided by incorporating object-related
information such as the size or weight, allowing the robot to
gauge better when the handover is executed. Sometimes, the

robot would retreat before the human could grasp the object if
sufficient time had passed. One reason for this hasty retreating
behavior could be that the recurrent network’s hidden inputs
overpower the observational input, causing the robot to follow
the general motion of the handover seen during training and
retreat. Such a failure could be mitigated by incorporating the
robot state as part of the input.

XXXXXXXXObject
User ID #1 #2 #3 #4 Total

(per object)
Stool 5 4 5 5 19/20
Box 4 5 4 4 17/20

Bedsheet 4 5 3 3 15/20
Total 13/15 14/15 12/15 12/15 51/60(per user)

TABLE III: Number of successful handovers of each object by the
Kobo robot to each user (total of 5 per object per user i.e. total of
20 per object and 15 per user).

V. CONCLUSION AND FUTURE WORK

In this work, we presented “MoVEInt”, a novel deep gener-
ative Imitation Learning approach for learning Human-Robot
Interaction from demonstrations in a Mixture of Experts fash-
ion. We demonstrated the use of Mixture Density Networks
(MDNs) as a multimodal policy representation in a shared
latent space of the human and the robot. We showed how
MoVEInt stems from the GMR-based formulation of predict-
ing interaction dynamics used in HMM-based approaches to
learning HRI. We showed how our MDN policy can predict
multiple underlying policies and combine them to effectively
generate response motions for the robot. We verified the
efficacy of MoVEInt across a variety of interactive tasks,
where we found that MoVEInt mostly outperformed other
baselines that either use explicitly modular representations
like an HMM or simple recurrent policy representations. Our
experimental evaluation showcases the versatility of MoVEInt,
which effectively combines explicitly modular distributions
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Fig. 3: Sample Human-Robot Interactions generated with the reactive motions generated by MoVEInt for a Bimanual Handover scenario.
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(a) Example of a generated Bimanual Handovers
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(b) Example of a generated Unimanual Handovers

Fig. 4: Sample trajectories generated by MoVEInt for the Bimanual and Unimanual Handovers in the HHI-Handovers dataset in [41]. The
3D plots show the reconstructed trajectories and the 2D plots show the corresponding progression of αi(x

h
t ) for the different components

of the MDN. In the 3D plots, the observed trajectory of the receiver is shown in red and the generated trajectory of the giver is shown
in blue and the giver’s corresponding ground truth is shown in black. The reconstruction of the individual latent components of the MDN
are shown in green, magenta, and orange. It can be seen that the learned components correspond to different parts of the task space. For
example, green denotes the hand locations for a unimanual handover, magenta denotes the hand locations for a bimanual handover, and
orange denotes the static hand locations for the starting and ending neutral poses. In the 2D plot, it can be seen how the coefficients for
components corresponding to bimanual (magenta) and unimanual (green) get activated based on the interaction being performed, while the
component corresponding to a neutral pose (orange) gets activated at the beginning of the interaction while both partners are static.

with recurrent policy representations for learning interaction
dynamics.

The main focus of this article is to explore the use of
MDNs as a latent policy representation for simplistic short-
horizon interactions like handshakes, handovers, etc., and show
the feasibility of our approach in learning various interactive
behaviors. One drawback is that we currently do not explicitly
study how robust the approach is to unknown behaviors of the
human, or how it performs on more complicated tasks.

Our next steps would be exploring how our approach
scales to longer horizon tasks such as bi-directional handovers,
collaborative sequential manipulation, or proactive tasks where
the robot leads the interaction. This would be validated via
a broader user study which would show the efficacy of our
approach. Some extensions for extrapolating to such tasks can
be explored by using better Generative models [8], [10], [42]
or adding explicit constraints for combining reactive motion
generation and planning [43]. Our future work would also
explore incorporating task-related constraints such as object
information for handover grasps [44], [45], force informa-
tion for enabling natural interactive behaviors [46]–[48], and
ergonomic and safety constraints for a more user-friendly
interaction [49], [50].
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virtual demonstration to real-world manipulation using lstm and mdn,”
in AAAI Conference on Artificial Intelligence (AAAI), 2018.

[24] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
International Conference on Learning Representations (ICLR), 2014.

[25] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,” in
International Conference on Machine Learning (ICML), 2014.

[26] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual concepts
with a constrained variational framework,” in International Conference
on Learning Representations (ICLR), 2016.

[27] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent service robotics, 2016.

[28] P. Evrard, E. Gribovskaya, S. Calinon, A. Billard, and A. Kheddar,
“Teaching physical collaborative tasks: object-lifting case study with a
humanoid,” in IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2009.

[29] S. Calinon, P. Evrard, E. Gribovskaya, A. Billard, and A. Kheddar,
“Learning collaborative manipulation tasks by demonstration using a
haptic interface,” in International Conference on Advanced Robotics
(ICAR), 2009.

[30] G. Maeda, M. Ewerton, R. Lioutikov, H. B. Amor, J. Peters, and
G. Neumann, “Learning interaction for collaborative tasks with prob-
abilistic movement primitives,” in IEEE-RAS International Conference
on Humanoid Robots (Humanoids), 2014.

[31] M. Ewerton, G. Neumann, R. Lioutikov, H. B. Amor, J. Peters, and
G. Maeda, “Learning multiple collaborative tasks with a mixture of
interaction primitives,” in IEEE International Conference on Robotics
and Automation (ICRA), 2015.

[32] H. G. Sung, “Gaussian mixture regression and classification,” Ph.D.
dissertation, RICE UNIVERSITY, 2004.

[33] G. J. McLachlan and K. E. Basford, Mixture models: Inference and
applications to clustering. M. Dekker New York, 1988.

[34] M. Baucum, A. Khojandi, and T. Papamarkou, “Hidden markov models
as recurrent neural networks: An application to alzheimer’s disease,” in
IEEE International Conference on Bioinformatics and Bioengineering
(BIBE), 2021.

[35] T. Hiraoka, S. Takase, K. Uchiumi, A. Keyaki, and N. Okazaki, “Recur-
rent neural hidden markov model for high-order transition,” Transactions
on Asian and Low-Resource Language Information Processing, 2021.

[36] J. Chiu and A. M. Rush, “Scaling hidden markov language models,”
in Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020.

[37] A. K. Pandey and R. Gelin, “A mass-produced sociable humanoid robot:
Pepper: The first machine of its kind,” IEEE Robotics & Automation
Magazine, 2018.

[38] L. Fritsche, F. Unverzag, J. Peters, and R. Calandra, “First-person tele-
operation of a humanoid robot,” in IEEE-RAS International Conference
on Humanoid Robots (Humanoids), 2015.

[39] V. Prasad, R. Stock-Homburg, and J. Peters, “Learning human-like hand
reaching for human-robot handshaking,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021.

[40] 3DiVi, “Nuitrack.” [Online]. Available: https://nuitrack.com/
[41] A. Kshirsagar, R. Fortuna, Z. Xie, and G. Hoffman, “Dataset of bimanual

human-to-human object handovers,” Data in Brief, 2023.
[42] E. Ng, Z. Liu, and M. Kennedy, “Diffusion co-policy for synergistic

human-robot collaborative tasks,” IEEE Robotics and Automation Letters
(RA-L), 2023.

[43] K. Hansel, J. Urain, J. Peters, and G. Chalvatzaki, “Hierarchical policy
blending as inference for reactive robot control,” in IEEE International
Conference on Robotics and Automation (ICRA), 2023.
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APPENDIX

GAUSSIAN MIXTURE REGRESSION SIMPLIFICATION

Here, we simplify the covariance calculation in the GMR
formulation (Eq. 5) to its equivalence to [27].
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since
∑N

i=1 αi(z
h
t )(µ̂

r
i ) = µ̂r

t and
∑N

i=1 αi(z
h
t ) = 1,

therefore −µ̂r
t

∑N
i=1 αi(z

h
t )(µ̂

r
i )

T + µ̂r
t (µ̂

r
t )

T
∑N

i=1 αi(z
h
t )

becomes 0.

https://nuitrack.com/
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