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Humans are the most intelligent of animals because they
have hands - Anaxagoras (Greek Philosopher, 500-428 BC).
Humans use their arms to manipulate objects, interact with
each other, and perceive through touch. Robots with similar
capabilities can automate repetitive and hazardous tasks, assist
and collaborate with humans, and contribute to enhanced
productivity across diverse industries. Thus, I am interested
in the overarching research question: How can robots effec-
tively utilize their arms for manipulation, interaction, and
perception? In this research statement, I describe my previous,
ongoing and future research work aimed at these three desired
functionalities of robotic arms.

I. RESEARCH TO DATE

A. Manipulation and Interaction

Human-robot collaborative manipulations (HRCM), for ex-
ample, object handovers and handshakes, lie at the intersection
of manipulation and interaction functions of robotic arms. In
my research, I have explored techniques from optimal control,
formal methods, imitation learning, and reinforcement learning
for HRCM.

Timing-specified controllers for handovers: One of the
most common HRCM is an object handover. The importance
of human-robot handovers has resulted in many handover
controllers proposed in the literature [1]. However, the existing
controllers do not provide guarantees on the timing of a han-
dover. Such timing guarantees may be crucial in productivity-
oriented industrial tasks and fast-paced life-critical scenarios
like surgery. To address this issue, we proposed a controller [2]
for human-robot handovers automatically synthesized from
formal specifications in Signal Temporal Logic. Further, we
developed receding-horizon controllers that allow users to
specify timing parameters for a handover and provide feedback
if the robot cannot satisfy those constraints [3]. These features
make such controllers useful for settings where end-users need
to tune the robot’s behavior without programming knowledge.

Learning HRCM from human demonstrations: Learning
HRCM from human demonstrations allows non-expert users
to teach robots and produce humanlike behaviors desirable
for humanoid robots. Several approaches have been pro-
posed for generating humanlike robot behavior from human
demonstrations of unimanual handovers [4–12]. However,
transferring large, deformable, or delicate objects requires
bimanual handovers. There is very little work on bimanual
human-robot handovers [13–16], and these works do not

address humanlike motion generation. To facilitate research
on humanlike bimanual handovers, we built the first public
datasets of bimanual human-to-human handovers [17] and
multiple sequential human-to-human handovers [18] involving
unimanual, bimanual, and self-handovers. We proposed a
framework [19] consisting of a Hidden Markov Model (HMM)
and convex optimization to generate humanlike robot reaching
motions while adhering to constraints such as maintaining a
constant grip width in robot-to-human bimanual handovers.

Similar to object handovers, many collaborative manipu-
lations, such as handshakes, fistbumps, object transport, and
collaborative assembly, can naturally be broken down into
underlying segments sequenced to achieve suitable behavior.
We demonstrated [20] that incorporating a separate HMM
over observations at the transition states – the states at the
boundaries of two segments of an interaction – enhances the
segmentation abilities of HMMs. However, this approach and
several other approaches for learning HRCM from human
demonstrations [21–24] require training a separate model
for each type of interaction. To learn multiple HRCM from
human demonstrations with a single model, we proposed a
framework [25] consisting of a Recurrent Mixture Density
Network (RMDN) and a Variational Autoencoder (VAE).
The RMDN encodes the latent trajectory of the human part-
ner and regularizes the robot embeddings in the VAE. The
RMDN+VAE model was then used to generate reactive robot
motion, achieving better results than methods that use either
modular latent space dynamics using HMM [24] or LSTM-
based latent dynamics models [26], on a variety of interactions
– handwaves, handshakes, fistbumps, and handovers.

Learning HRCM with reinforcement learning: Rein-
forcement learning (RL) has been successfully demonstrated
for autonomous manipulation and locomotion tasks [27, 28].
However, there is limited work on learning HRCM with
RL due to the sample-efficiency and safety requirements
of HRCM. We evaluated a sample-efficient RL algorithm,
“Guided Policy Search” (GPS) [29], for generating a robot’s
reaching motions in handovers [30, 31]. The key findings were
that the learned policy had good generalizability over changes
in the object’s mass but poor generalizability over changes
in the handover location. We also reviewed [32] existing safe
robot reinforcement learning (SRRL) methods and argued that
interactive behaviors need more attention from the SRRL
community to achieve SRRL in human-centered environments.

Non-verbal communication in HRCM: Nonverbal cues



such as gaze behaviors are used to support shared work-
space collaboration [33]. These gestures are important for
coordinating tasks and establishing common ground relative
to task states and the internal states of the collaborators. In
a series of studies [34, 35], we investigated human-inspired
robot receivers’ gaze behaviors in human-to-robot handovers.
Our results revealed that, for both observers and participants
in a handover, when the robot exhibited a Face-Hand-Face
gaze (gazing at the giver’s face and then at the giver’s hand
during the reach phase and back at the giver’s face during
the retreat phase), participants considered the handover to be
more likable, anthropomorphic, and communicative of timing.
We did not find evidence of any effect of the object’s size or
fragility or the giver’s posture on the gaze preference. These
findings could help the design of non-verbal cues in HRCM.

B. Perception

Besides manipulation and interaction, robots can utilize
their arms for perception, i.e., to understand and explore
their environment through touch. My research has focused
on utilizing vision-based tactile sensors (VBTS) like GelSight
Mini [36] to perceive object properties. VBTS provide a cost-
effective and high-resolution alternative to traditional tactile
sensors, capitalizing on advancements in camera technology
and computer vision.

Active texture recognition: Various applications, such
as laundry separation, waste sorting, and material handling,
can benefit from the rapid classification of textures. Classi-
fication of fabrics has been tackled with different types of
sensors using both supervised and active methods [37–41].
Our study [42] focused on achieving sample-efficient texture
recognition using VBTS. We compared two information-
theoretic active exploration strategies aimed at minimizing
predictive entropy or variance of probabilistic classifiers. Ad-
ditionally, we assessed neural network architectures, uncer-
tainty representations, data augmentation impact, and dataset
variability for tactile texture recognition. We found that the
active exploration strategy had a minor influence on texture
recognition accuracy, with data augmentation and dropout
rate playing more significant roles. In a comparative study,
our best approach achieved a 90.0% accuracy in under five
touches, surpassing the 66.9% accuracy achieved by humans.
This finding underscores the effectiveness of VBTS in texture
recognition for practical applications.

Object hardness classification: The ability to detect an
object’s hardness can aid robots in performing tasks like
waste sorting, automated harvesting, and handling delicate
objects in household tasks. Prior works on tactile hardness
estimation [43, 44] used large datasets with ground-truth Shore
hardness values to train a deep neural network to estimate
the Shore hardness of objects. Humans, however, perceive
hardness not as an absolute value but in comparison with
other objects. Inspired by how humans perceive hardness,
we investigated whether a robotic manipulator equipped with
VBTS can learn to classify objects of different hardnesses
without having access to actual Shore hardness values. We

found that the CNN-LSTM architecture used in [43] trained
with a categorical cross-entropy loss achieved 76 ± 4% ac-
curacy in discerning the hardness similarity of untrained
hardness classes to the trained classes, with 20 touches per
object. Human participants achieved 80± 9% accuracy on the
same task in our study [45], requiring 1 to 20 touches. Our
ongoing work seeks to improve the VBTS’ hardness similarity
detection using active exploration.

In-hand object pose estimation: Accurate in-hand object
pose estimation is crucial for robotic manipulation and assem-
bly tasks. In this ongoing work, we combine two VBTS and an
RGB-D camera to estimate the 6D pose of the object grasped
by the robotic arm. VBTS offer resilience to visual occlusion
inherent in in-hand manipulation, while the camera provides
a broader field of view. Unlike existing deep-neural-network-
based in-hand pose estimation methods [46–48], which require
prior training datasets, we are exploring an approach that
requires only the 3D model of the object, using a weighted
Iterative Closest Point (ICP) algorithm, dynamically evaluating
and adapting contributions from each sensor modality.

II. FUTURE WORK

Human-Robot Collaborative Manipulation: In the future,
I plan to develop robot controllers for dynamic HRCM skills
like human-robot partner juggling. Further, to facilitate the
development and evaluation of algorithms and systems for
HRCM, I propose to create a simulation framework and bench-
marks for several physical human-robot interaction tasks in
industrial and domestic environments. I also plan to investigate
non-verbal communication in HRCM, specifically in social
interactions such as handshakes and fistbumps.

Tactile Perception: Humans use specific “exploratory pro-
cedures (EPs)” [49] to identify object properties, for exam-
ple, lateral motion to detect texture and pressure to detect
deformability. I plan to investigate whether these exploratory
procedures are optimal for robotic arms equipped with tactile
sensors or whether robots can learn – with reinforcement learn-
ing – exploratory procedures better suited for their specific
type of tactile sensors.

Bi-manual Visuo-tactile Manipulation: Robotic grasping
and pouring are two fundamental visuo-tactile manipulation
skills and have been an area of active research for several
decades. However, bi-manual grasping and pouring with differ-
ent types of robotic grippers remain open challenges. I seek to
investigate methods for learning gripper-aware policies for bi-
manual robotic grasping and pouring with visuo-tactile input.

Co-optimization of Hand and Action: Finally, going
back to Anaxagoras’ quote at the beginning of this research
statement, there is a strong interdependence between hand
design and control policy for manipulation. Considering this
interdependence, I aim to develop methods for co-optimizing
robot hand design and manipulation policy. This goal can
be achieved by leveraging the recent advances in massive
parallel physics simulations and numerical optimization by
reinforcement learning.
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