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Abstract—Reinforcement Learning (RL) has demonstrated
remarkable success across various domains. Nonetheless, a sig-
nificant challenge in RL is to ensure safety, particularly when
deploying it in safety-critical applications such as robotics and
autonomous driving. In this work, we develop a robust and
safe RL methodology grounded in manifold space. Initially, we
construct a constrained manifold space, taking safety constraints
into consideration. We then propose a robust safe RL approach,
supported by theoretical analysis, based on the value at risk and
conditional value at risk, in order to enhance the robustness
of safety. Our methodology is designed to ensure safety within
stochastic constraint environments. Following the theoretical
analysis, we develop a practical, safe algorithm to search for a
robust safe policy on stochastic constraint manifolds (ROSCOM).
We evaluate the effectiveness of our approach through circular
motion and air-hockey tasks. Our experiments demonstrate that
ROSCOM outperforms existing baselines in terms of both reward
and safety.

Note to Practitioners—Real-world applications often involve
inherent uncertainties, noise, and high-dimensional spaces. This
complexity accentuates the urgency and challenge of ensuring
safety in robot learning, especially when implementing RL in
practical environments. To address this critical issue, we build
a stochastic constraint manifold to delineate the safety space,
thus establishing a rigorous framework for robot learning at
each iteration. Compared with state-of-the-art baselines, our
method can provide remarkable performance regarding safety
and reward performance. For example, in an air hockey robot
learning task, our method has demonstrated a remarkable 50%
enhancement in safety performance compared to the ATACOM
framework [1], while concurrently exhibiting superior reward
performance. Moreover, in contrast to traditional algorithms,
including CPO [2], PCPO [3], our method has achieved a 99%
improvement in safety performance, coupled with significantly
superior reward performance. These empirical insights render
our approach not only theoretically sound but also practically
efficacious, indicating its potential as a useful tool in real robot
learning and beyond.
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I. INTRODUCTION

REINFORCEMENT Learning (RL) has garnered substan-
tial attention in recent years due to its capability to

address complex problems and exhibit impressive performance
in various tasks [4], [5], such as AlphaGo [6], finance [7],
multi-robot control [8], [9], and autonomous driving [10].
However, the deployment of RL in real-world applications,
particularly in safety-critical systems, presents challenges as an
RL agent may execute unsafe actions that could harm humans
or damage the agent’s environment [4]. Safe RL methods
tackle this issue by incorporating safety requirements during
the learning process and ensuring that the decisions made by
the RL agent do not lead to hazardous outcomes.

Numerous state-of-the-art (SOTA) methods have been pro-
posed to ensure RL safety, including CPO [2], PCPO [3],
RCPO [11], MACPO [8], and MAPPO-Lagrangian [8]. How-
ever, these approaches are not applicable to situations where
the robot constraints are stochastic. Such scenarios are fre-
quently encountered in real-world applications with high-
dimensional space, like robotics and autonomous driving. The
robot’s observations may exhibit uncertainty due to noisy sen-
sors, while the robot’s constraints may be stochastical owing to
the presence of other agents, such as humans. Thus, to ensure
the safety of a robot and its environment, it is essential to
consider stochastic constraints during robot learning in high-
dimensional space.

In this work, we aim to address the critical question:
How can we guarantee RL safety with stochastic constraints
in high-dimensional space? To ensure safety in stochastic
environments with high-dimensional space, we need to cal-
culate safety bounds and construct constraint manifolds that
incorporate these bounds. Manifolds are highly effective for
managing high-dimensional data, a fact that is well-supported
by numerous studies [12]–[14]. With the constraint manifolds,
we can search for a safe policy for robot learning, where
the constraint manifold is well-suited for representing high-
dimensional constraints. The contributions of this work are as
follows:

• We introduce a problem formulation that considers
stochastic constraints on manifolds. Specifically, the
stochastic constraints are incorporated into the state space
based on manifolds.

• We offer theoretical safety bounds on the stochastic con-
straint manifold by leveraging Value-at-Risk (VaR) and
Conditional Value-at-Risk (CVaR) methods [15], [16].
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• We propose an algorithm for searching a robust safe
policy on a stochastic constraint manifold (ROSCOM)
and demonstrate its effectiveness compared to several
SOTA safe RL algorithms.

II. RELATED WORK

Deploying RL in real-world applications necessitates the
assurance of safety for both the agent and the environment, in
addition to robustness in the face of uncertainties. Researchers
have proposed a variety of safe and robust RL methods to
apply RL in safety-critical environments, such as autonomous
driving and robotics [4], [10], [17], [18]. Despite these efforts,
there remains a need for further development of RL methods
that can address safety and robustness challenges concurrently.
This section provides a brief analysis of the current state of
research in the domain of safe and robust RL.

A. Safe Reinforcement Learning.

In recent years, research on safe RL has gained significant
attention due to its importance in addressing the safety con-
cerns in various applications [4]. Safe RL can be formulated
as a constrained optimization problem with methods falling
into three main categories: constrained state space, constrained
action space, and constrained cumulative cost.

The first category comprises methods that leverage con-
strained state space as a safe state space [19]–[22]. These
methods often incorporate Gaussian Process models to esti-
mate safe state space during exploration [19]–[22]. Another
notable approach is ATACOM [1], which projects exploration
states onto a constrained manifold. Our method also belongs
to this category.

The second category includes methods that employ a con-
strained action space as a safe action space [23]–[28]. For
instance, some methods use temporal logic verification to
ensure the safety of actions during exploration [26], while
others rely on Lyapunov functions to constrain the action space
with energy functions [23]–[25].

The third category focuses on optimizing safe policies
based on cumulative safety cost [2], [3], [8], [11]. Examples
include CPO [2] for single-agent settings and MACPO [8]
and MAPPO-Lagrangian [8] for multi-agent settings. These
methods demonstrate the versatility of Safe RL approaches
in addressing safety concerns across various domains and
settings.

B. Robust Reinforcement Learning.

Existing robust RL methods tackle three types of uncertain-
ties: reward uncertainty [29], [30], transition uncertainty [31]–
[38], and observation uncertainty [39]–[43].

To address reward uncertainty, Liang et al. [29] proposed
a human-preferences-based learning method, while Li et al.
[30] developed a meta-learning approach that learns uncertain
rewards using normalized maximum likelihood.

For transition uncertainty, Chua et al. [31] introduced a
probabilistic dynamics model to balance the trade-off between
model-based and model-free RL methods. Zhang et al. [32]

employed a natural player to disrupt the multi-agent system’s
transitions, similar to an adversarial agent, enabling the ego
player to enhance its performance in adversarial environments.

Regarding observation uncertainty, Lutjens et al. [39] pre-
sented a certified adversarial robustness method for handling
uncertainties during exploration. Zhang et al. [41] proposed
a robust policy regularizer for uncertain observations in both
discrete and continuous environments. These methods demon-
strate the breadth of approaches in robust RL for addressing
various uncertainties, thus facilitating the development of more
reliable and resilient agents in diverse application scenarios.

The existing methods primarily focus on addressing either
the safety or robustness aspect of RL, but not both simulta-
neously. The challenge of robust and safe RL lies in ensuring
safety in uncertain environments, such as those with uncertain
observations and constraints. The work of Liu et al. [18] is
the closest to addressing this challenge, as they proposed a
robust and safe RL method in an adversarial setting where
two attackers disturb agent behaviors. However, the adversarial
setting may limit the practicality of their method in real-world
applications.

In contrast to Liu et al. [18], our approach ensures RL
safety under stochastic constraints by employing a constraint
manifold, which is capable of handling high-dimensional data
in real-world environments. The stochastic constraints are
generated by a stochastic function rather than an adversarial
agent. Unlike Liu et al. [18], who employ neural networks
to model the adversarial agent’s behaviors. Lastly, our work
provides theoretical safety bounds based on the constraint
manifold, ensuring safety in stochastic constraints.

Our method focuses on the observation uncertainty, where
the state space is disturbed by some noise, and we need to
ensure safety via safety bounds. By addressing both safety and
robustness in RL simultaneously, our method paves the way
for more reliable and resilient agents that can operate effec-
tively in safety-critical applications and stochastic constrained
environments.

III. PROBLEM FORMULATION

A robust safe RL problem [4] can be seen as a standard
MDP with a constraint set under stochastic constraints, to illus-
trate this problem, we consider a tuple (S,A, P, r, ρ0, γ, ci, ϵi),
where S is a state space, A is an action space, P : S×A×S →
[0, 1] is a transition function, r denotes the reward, ρ0 is the
initial state distribution, γ is a discount factor, ci : S → R
denotes a deterministic state-constraint function of constraint
i, ∀ i = 1, . . . , N , ϵi : S → R denotes a stochastic state-
constraint function of constraint i.

In robust safe RL, the goal of an optimal policy π is to
maximize the reward while ensuring safety by selecting an
action a under stochastic constraints. τ ∼ π is a trajectory,
τ = (s0, a0, s1, . . .), which depends on π, s0 ∼ ρ0, at ∼
π(·|st), st+1 ∼ P , where the state st ∈ S at time step t,
the action at ∈ A at time step t, t ∈ {0, 1, · · · , T}, T is the
episode length.

We formulate the robust safe RL problem as an MDP
problem as shown in Equation (1), in which the stochastic
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Fig. 1: Schematic diagram of stochastic constraints and safety
bound. (a). 3D stochastic constraints, Gaussian noise in the
x, y, and z directions; (b). 3D safety bound, the areas of dark
brown and red denote the new safe space, and the area of light
brown denotes the uncertain space.

constraints are taken into account. Figure 1 shows an example
of the stochastic constraints. In this Equation, we need to
search for a policy to maximize the discounted cumulative
reward value while ensuring learning safety. Specifically, the
safety constraints consist of deterministic constraints ci(st)
and stochastic constraints ϵi(st) at time step t, the stochastic
constraints ϵi(st) are from some uncertain noises due to
imperfect observation. The aggregate of these constraints,
ci(st) plus ϵi(st), need to remain below a predefined threshold
δ with a probability of η. Particularly, for all states st, if the
constraints ci(st) and ϵi(st) are equal to zero, then states st are
the safe set (safe set indicates that we can ensure robot learning
safety within these states), that is the safe set = {st|ci(st) =
0, ϵi(st) = 0}. Conversely, for all states within the unsafe
set, ci(st) and ϵi(st) are positive real values, expressed as
R+. That is the unsafe set = {st|ci(st) ∈ R+, ϵi(st) ∈ R+}.
For each type of constraint i, there corresponds a safety bound
δi and a safety probability ηi. For simplicity, we denote these
as δ and η, respectively.

max
π

Eτ∼π

[
T∑
t

γtr (st, at)

]
,

s.t. Pr(|ci(st) + ϵi(st)| ≤ δ) > η.
(1)

IV. METHOD

We first present the definitions of state constraint manifolds.
Subsequently, we provide the theoretical safety bounds based
on VaR and CVaR to search for safe policies. Sections IV-A is
to build a stochastic constrained manifold, and Section IV-B
aims to provide safety bounds on a stochastic constrained
Manifold. Lastly, Section IV-C presents a practical algorithm
for searching robust safe policies within a stochastic constraint
manifold.

A. State Constraints on a Manifold

Similiar to ATACOM [1], in the high-dimensional state
space S (the state variable s ∈ S) is consisted of two sets,
a controllable set q ∈ Q ∈ RQ and an uncontrollable set

x ∈ X , s = [q,x]
⊤. In this study, constraints are defined

on the controllable set, Pr(|ci(q) + ϵi(q)| < δ) > η, where
ci = [fi, gi] ∈ RF+G denotes constraints, equality constraints
fi = 0, fi ∈ RF and inequality constraints gi < 0, gi ∈ RG,
ϵi ∈ RF+G denotes stochastic constraints, δ ∈ RF+G denotes
a set of safety bounds, for simplicity, we use η ∈ RF+G

to denote a set of safety probability ηo,o∈{1,2,...,F+G}, fi to
denotes a set of equality constraints f

o1,o1∈{1,2,...,F}
i , gi to

denotes a set of equality constraints g
o2,o2∈{1,2,...,G}
i . Note,

when comparing values of a high-dimensional data set, we
assess each individual element within the data set.

Definition 1. If the constraints are differentiable, we can
have the following constraint manifolds. M1 is the equality
constraints manifold with stochastic constraints, M2 is the
inequality constraints manifold with stochastic constraints, as
shown in Equation (2):

[
M1 = {|fi(q) + ϵfi

(q)| − δ = 0}
M2 =

{
|gi(q) + ϵgi(q)| − δ + 1

2µ
2
s = 0

} ] =⇒
[

M1V = {fiV (q) = 0}
M2V =

{
giV (q)+

1
2µ

2 = 0
} ] (2)

In Equation (2), M1V and M2V represent the manifolds of
equality and inequality constraints with VaR (Value at Risk)
bounds, respectively. In the following section, we will describe
how to compute these manifolds to ensure safety. ϵfi ∈ RF

denotes the stochastic constraints on the equality constraint
manifold, ϵgi ∈ RG denotes the stochastic constraints on
the inequality constraint manifold, fiV (q) and giV (q) de-
notes equality constraints and inequality constraints with VaR
safety bounds considering stochastic constraints. To construct
the safety manifold under inequality constraints, the slack
variables µs ∈ RG and µ ∈ RG are leveraged, which are
introduced into the constraints [1].

Therefore, we have the new constraint set c(q,µs) ∈
RF+G, as shown in Equation (3), JfiV (q) ∈ RF×Q is the
Jacobian matrice of fiV (q) ∈ RF . We have two equality
constraint sides when inequality constraints are converted to
equality constraints with safety bounds. Thus, we consider two
safety sides of the equality constraints, J+

fiV (q) ∈ RF×Q and
J−
fiV (q) ∈ RF×Q. J+

fiV (q) ∈ RF×Q and J−
fiV (q) ∈ RF×Q

are the Jacobian matrices of the safety bounds for the function
giV (q) ∈ RG.

c(q,µ, q̇, µ̇) =

JfiV (q)
+ 0

JfiV (q)
− 0

JgiV (q) diag(µs)

[ q̇
µ̇s

]
(3)

= Jc(q,µs)

[
q̇
µ̇s

]
, (4)

where Jc(q,µs) ∈ R(2F+G)×(Q+G) is the Jacobian Ma-
trix, by leveraging SVD [44] and QR [45], we can have
Jc(q,µs)Nc(q,µs) = 0, Nc(q,µs) ∈ R(Q+G)×(Q−2F ) is
the null space, which can be seen as the tangent space bases
of a constraint manifold.
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Remark 1. Inspired by ATACOM [1], the nullspace of the
Jacobian matrix Jc(q,µs) ∈ R(2F+G)×(Q+G) for the tangent-
space bases of the constraint manifold is Nc(q,µs) ∈
R(Q+G)×(Q−2F ), we can search a safe policy at each time
step t on the constraint manifold c(q,µs).

In the subsequent section, we will delve into the methodolo-
gies and strategies to guarantee safety on a stochastic manifold.
The complexities inherent to these manifolds necessitate rig-
orous approaches to maintain safety, and our discussion will
shed light on these critical procedures.

B. Ensuring Safety with VaR and CVaR on a Stochastic
Constraint Manifold

This section presents a theoretical analysis of the safety
bounds based on stochastic constraints. First, we give the
definition of the safety bounds and the risk measurements.
Then, we derive safety bounds for stochastic constraints by
leveraging VaR and CVaR [15], [16].

Definition 2. VaR and CVaR. For safety constraints |ci(q) +
ϵi(q)|, the value-at-risk (VaR) of |ci(q) + ϵi(q)| with confi-
dence level η ∈ (0,1) is defined as:

VaRη(|ci(q) + ϵi(q)|) = min{δ | F (δ) ≥ η},

where F (δ) = P (|ci(q) + ϵi(q)| ≤ δ) is the cumulative
distribution function (CDF ), ϵi(q) denotes the stochastic
costs. The conditional value-at-risk (CVaR) of |ci(q) + ϵi(q)|
with confidence level η is defined as the expectation of the
η-tail distribution of |ci(q) + ϵi(q)| as

CVaRη(ϵi(q)) = E {δ | δ ≥ VaRη(|ci(q) + ϵi(q)|)} .

Here, we assume stochastic constraints ϵi(q) subject to a
Gaussian distribution N , Z = ϵi(q) ∼ N(µ,σ2).

1) Safety Bound for Inequality Constraints with Stochastic
Noises on a Manifold:

We rewrite V aR for inequality constraints as following
equations, where gi(q)

a denotes the old deterministic inequal-
ity constraints, gi(q) denotes the new deterministic inequality
constraints, δg denotes the safety bound for inequality con-
straints, µ denotes the mean of stochastic constraints ϵi(q), σ
denotes the standard deviation of stochastic constraints ϵi(q),
η is the safety probability for robot learning.

F (δg) = P (gi(q)
a + ϵi(q) ≤ δg), (5)

VaRη(gi(q)
a + ϵi(q)) = min{δg | F (δg) ≥ η}

= min{δg | P (gi(q)
a + ϵi(q) ≤ δg) ≥ η}

= min{δg | P
(
ϵi(q)− µ

σ
≤ δg − gi(q)

a − µ

σ

)
≥ η}

= min{δg | Φ
(
δg − gi(q)

a − µ

σ

)
≥ η}. (6)

(1) Computing safety bounds for inequality stochastic con-
straints with VaR on a manifold:
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Fig. 2: VaR safety bounds on a manifold for inequality
constraints in terms of (a) safe probability, (b) constraints’
mean, and (c) constraints’ standard deviation.

Lemma 1. The safety bound BVg1 on a stochastic inequality
constraint manifold via VaR is given by,

gi(q)
a + gi(q) ≤ −Φ−1(η)σ − µ+ gi(q)︸ ︷︷ ︸

safety bound BVg1

.

Proof. With Equation (6), we can have the following safety
safety bound,

Φ

(
δg − gi(q)

a − µ

σ

)
≥ η

=⇒ δg − gi(q)
a − µ

σ
≥ Φ−1(η)

=⇒ δg ≥ Φ−1(η)σ + gi(q)
a + µ. (7)

We can observe the following equation if we want to ensure
total safety with probability η,

0 = δg ≥ Φ−1(η)σ + gi(q)
a + µ

=⇒ gi(q)
a ≤ −Φ−1(η)σ − µ. (8)

Therefore, the safety bound BVg1 via VaR that considered
uncertain areas is given as follows:

gi(q)
a + gi(q) ≤ −Φ−1(η)σ − µ+ gi(q)︸ ︷︷ ︸

safety bound BVg1

. (9)

Based on Lemma 1, we can have VaR safety bound for
inequality constraints in terms of (a) safety probability, (b)
constraints’ mean and (c) constraints’ standard deviation, as
shown in Figure 2. It demonstrates the robustness of our safety
bound under varying conditions of safety probability (a), mean
of constraints (b), and standard deviation of constraints (c).
Once we have the safety bounds, we can search for the policy
on the tangent space of safety bounds, which helps ensure
performance stability. We also provide CVaR safety bound for
inequality constraints, for details, see the following Lemma 2.

(2) Computing safety bounds for inequality stochastic con-
straints with CVaR on a manifold:
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Inspired by the reference [46], since the stochastic con-
straints subjects to a Gaussian distribution, we can have

ϕ =
1

σ
√
2π

e
− 1

2

(
x−gi(q)a−u

σ

)2

, (10)

CVaRη = E[X | X ≥ δg] = gi(q)
a + µ+ σ

ϕ
(
Φ−1(η)

)
1− η

≤ 0

=⇒ gi(q)
a ≤ −µ− σ

ϕ
(
Φ−1(η)

)
1− η

, (11)

Lemma 2. The safety bound BCg1 on an inequality stochastic
constraint manifold via CVaR that considered uncertain areas
is given as follows:

gi(q)
a + gi(q) ≤ −µ− σ

ϕ
(
Φ−1(η)

)
1− η

+ gi(q)︸ ︷︷ ︸
safety bound BCg1

, (12)

Proof. We have a random vector X ∈ RF+G,
and CVaRδg (X) = E (X | X > δg) =∫∞
δg

xf(x)dx/(1− F (δg)), where F (δg) is a CDF, f(x) is
a Probability Density Function (PDF), and δg = VaRδg , and
P (X > δg) = 1− η, x ∈ RF+G.

As shown in the first part, Φ [(δg − µ) /σ] = η, we have

∫ ∞

δg

xf(x)dx =

∫ ∞

−∞
xf(x)dx−

∫ δg

−∞
xf(x)dx

= µ−
∫ δg

−∞
xf(x)dx

= µ− µΦ [(δg − µ) /σ]− σ

∫ (δg−µ)/σ

−∞
zϕ(z)dz

= µ− µη + σ

∫ (δg−µ)/σ

−∞
ϕ′(z)dz

= µ(1− η) + σϕ [(δg − µ) /σ]

= µ(1− η) + σϕ
[
Φ−1(η)

]
.

Thus, we have the safety bound,

CVaRδg
(X) =

µ(1− η) + σϕ
[
Φ−1(η)

]
1− F (δg)

=
µ(1− η) + σϕ

[
Φ−1(η)

]
1− η

= µ+
σϕ
[
Φ−1(η)

]
1− η

. (13)

In accordance with Lemma 2, it becomes apparent that
we are able to establish a safety bound predicated on CVaR
for inequality constraints, and this relationship is explicated
with respect to three fundamental components: (a) the safe
probability, (b) the mean of the constraints, and (c) the
standard deviation of the constraints. The representation of
these relationships is provided in Figure 3.
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Fig. 3: CVaR safety bounds on a manifold for inequality
constraints in terms of safe probability (a), constraints’ mean
(b), and constraints’ standard deviation (c).

2) Safety Bounds for Equality Constraints with Stochastic
Noises on a Manifold:

Stochastic equality constraints present a distinct challenge
compared to stochastic inequality constraints due to their
inherent two-sided constraint structure on a manifold, re-
sulting in the existence of two separate safety bounds. The
computation of probabilities for both sides of these equality
constraints is a non-trivial task. To address this, we propose a
transformation that allows us to reframe the problem of com-
puting two equality safety bounds into two distinct problems
centered around the computation of inequality safety bounds.
Specifically, we aim for VaR and CVaR safety bounds based
on the two inequality safety bounds obtained through this
transformation.

Here, we rewrite VaR for equality constraints, fi(q) denotes
equality constraints, as shown in Equations (14) and (15).

F (δf ) = P (|fi(q) + ϵi(q)| ≤ δf ) (14)
= P (−δf ≤ fi(q) + ϵi(q) ≤ δf )

= P (fi(q) + ϵi(q) ≤ δf )− P (fi(q) + ϵi(q) ≤ −δf )

= Φ

(
δf − fi(q)− µ

σ

)
− Φ

(
−δf − fi(q)− µ

σ

)
.

VaRη(|fi(q) + ϵi(q)|) = min {δf | F (δf ) ≥ η}

= min

{
δf | Φ

(
δf − fi(q)− µ

σ

)
− (15)

Φ

(
−δf − fi(q)− µ

σ

)
≥ η

}
.

For one side safety bound via VaR, F (δaf ) = P (fi(q)
a +

ϵi(q) > δaf ) <
1−η
2 . For the other side safety bound via VaR,

F (δbf ) = P
(
fi(q)

b + ϵi(q) ≤ −δbf

)
< 1−η

2 , δbf is the other
side’s constrained limit set.

(1) Computing Safety Bounds for Equality Constraints with
VaR on a Manifold:
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Theorem 1. The first-side safety bound BVf1 on the equality
stochastic constraint manifold via VaR that considers uncer-
tain areas is given by,

fi(q)
a + fi(q) < −Φ−1

(
1+ η

2

)
σ − µ+ fi(q)︸ ︷︷ ︸

safety bound BVf1

.

The second-side safety bound BVf2 on the equality stochas-
tic constraint manifold via VaR that considers uncertain areas
is given by,

−µ− Φ−1

(
1− η

2

)
σ + fi(q)︸ ︷︷ ︸

safety bound BVf2

< fi(q)
b + fi(q).

Proof. Based on Equations (14) and (15), we can prove the
first side of safety bounds.

(A). The first side safety bound via VaR:
With the VaR definition on constraint manifolds (as shown

in Definition 2) and Equation (5), we can have

F (δaf ) = P (fi(q)
a + ϵi(q) > δaf ) <

1− η

2

=⇒ 1− P (fi(q)
a + ϵi(q) ≤ δaf ) <

1− η

2

=⇒ 1+ η

2
< P

(
ϵi(q)− µ

σ
≤

δaf − fi(q)
a − µ

σ

)
=⇒ 1+ η

2
< Φ

(
δaf − fi(q)

a − µ

σ

)
=⇒ Φ−1

(
1+ η

2

)
<

δaf − fi(q)
a − µ

σ

=⇒ Φ−1

(
1+ η

2

)
σ + fi(q)

a + µ < δaf . (16)

Since it’s a equality constraint equation, we can have δaf =
0, thus, the condition of uncertain areas of fi(q)

a is as follows,

Φ−1

(
1+ η

2

)
σ + fi(q)

a + µ < δaf = 0 (17)

=⇒ fi(q)
a < −Φ−1

(
1+ η

2

)
σ − µ. (18)

Therefore, the safety bound BVf1 via VaR that considered
uncertain areas is given as follows:

fi(q)
a + fi(q) < −Φ−1

(
1+ η

2

)
σ − µ+ fi(q)︸ ︷︷ ︸

safety bound BVf1

. (19)

(B). The second side safety bound via VaR:
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Fig. 4: VaR safety bounds on a manifold for Equality Con-
straints in terms of safe probability (a), constraints’ mean (b),
and constraints’ standard deviation (c).

Similar to the proof of the first side safety bound, we can
have

F (δbf ) = P
(
fi(q)

b + ϵi(q) ≤ −δbf
)
<

1− η

2

=⇒ P

(
ϵi(q)− µ

σ
≤

−δbf − fi(q)
b − µ

σ

)
<

1− η

2

=⇒ Φ

(
−δbf − fi(q)

b − µ

σ

)
<

1− η

2

=⇒ −δbf − fi(q)
b − µ < Φ−1

(
1− η

2

)
σ

=⇒ −fi(q)
b − µ− Φ−1

(
1− η

2

)
σ < δbf . (20)

The condition of uncertain areas of fi(q)
b is as follows,

−fi(q)
b − µ− Φ−1

(
1− η

2

)
σ < δbf = 0

=⇒ −µ− Φ−1

(
1− η

2

)
σ < fi(q)

b. (21)

Thus, the safety bound BVf2 via VaR that considered
uncertain areas is given as follows:

−µ− Φ−1

(
1− η

2

)
σ + fi(q)︸ ︷︷ ︸

safety bound BVf2

< fi(q)
b + fi(q). (22)

Leveraging the aforementioned Theorem, we are able to
establish VaR safety bounds specific to equality constraints.
These bounds are characterized by three crucial parameters:
the safe probability, the constraints’ mean, and the constraints’
standard deviation. A detailed representation of this relation-
ship is depicted in Figure 4. Furthermore, we present the CVaR
safety bounds pertinent to equality constraints. A detailed
elaboration of these bounds is introduced in Theorem 2,
providing a comprehensive analysis of safety bounds.
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(2) Computing Safety Bounds for Equality Constraints with
CVaR on a Manifold:

Theorem 2. For the first side, safety bound via CVaR:

CVaRη = E[X | X ≥ δf ] = fi(q)
a + µ+ σ

ϕ
[
Φ−1(1+η

2 )
]

1−η
2

=⇒ fi(q)
a + µ+ σ

ϕ
[
Φ−1(1+η

2 )
]

1−η
2

≤ X = 0

=⇒ fi(q)
a ≤ −µ− σ

ϕ
[
Φ−1(1+η

2 )
]

1−η
2

. (23)

The first side-safety bound BCf1 on equality stochastic
constraint Manifolds via CVaR that considered uncertain areas
is given as follows:

fi(q)
a + fi(q) ≤ −µ− σ

ϕ
[
Φ−1(1+η

2 )
]

1−η
2

+ fi(q)︸ ︷︷ ︸
safety bound BCf1

. (24)

For the second side safety bound via CVaR:

CVaRη = E[X | X ≤ −δf ]

= fi(q)
b + µ− σ

ϕ
[
Φ−1(1−η

2 )
]

1−η
2

=⇒ fi(q)
b + µ− σ

ϕ
[
Φ−1(1−η

2 )
]

1−η
2

≤ X = 0

=⇒ fi(q)
b ≤ −µ+ σ

ϕ
[
Φ−1(1−η

2 )
]

1−η
2

. (25)

The second side-safety bound BCf2 on equality stochastic
constraint manifolds via CVaR that considered uncertain areas
is given as follows:

fi(q)
b + fi(q) ≤ −µ+ σ

ϕ
[
Φ−1(1−η

2 )
]

1−η
2

+ fi(q)︸ ︷︷ ︸
safety bound BCf2

. (26)

Proof. On the basis of Lemma 2 and Theorem 1, for a
random vector X within equality constraints on a manifold,
CVaR is denoted as CVaRδf

(X) = E (X | X > δf ) =∫∞
δf

xf(x)dx/(1− F (δf )), and δf = VaRδf
, and

P (X > δf ) = (1− η)/2 [46].
Since X ∼ N(µ,σ2), Z = (X − µ)/σ ∼ N(0,1),

the standard normal distribution function Φ specifies Φ(z) =
P (Z ⩽ z) and 1− Φ(z) = P (Z > z).

(A). The first side safety bound via CVaR:∫ ∞

δa
f

xf(x)dx =

∫ ∞

−∞
xf(x)dx−

∫ δa
f

−∞
xf(x)dx

= µ−
∫ δa

f

−∞
xf(x)dx.

Changing variables with x = µ+σz and dx = σdz. Based
on the change of variables, noting that ϕ(z) = σf(µ+ σz),
is a PDF which subjects to a Gaussian distribution, we have∫ δa

f

−∞
xf(x)dx =

∫ (δa
f−µ)/σ

−∞
(µ+ σz)ϕ(z)dz

= µ

∫ (δa
f−µ)/σ

−∞
ϕ(z)dz + σ

∫ (δa
f−µ)/σ

−∞
zϕ(z)dz

= µΦ
[(
δaf − µ

)
/σ
]
+ σ

∫ (δa
f−µ)/σ

−∞
zϕ(z)dz.

As shown in the above Equations, Φ
[(

δaf − µ
)
/σ
]
= η+

(1 − η)/2 = (1 + η)/2, and the key here is the observation
that the standard normal density function satisfies zϕ(z) =
−ϕ′(z).

∫ ∞

δa
f

xf(x)dx

= µ− µΦ
[(
δaf − µ

)
/σ
]
− σ

∫ (δa
f−µ)/σ

−∞
zϕ(z)dz

= µ− µ
1 + η

2
+ σ

∫ (δa
f−µ)/σ

−∞
ϕ′(z)dz

= µ(
1− η

2
) + σϕ

[(
δaf − µ

)
/σ
]

= µ(
1− η

2
) + σϕ

[
Φ−1(

1 + η

2
)

]
.

With the above Equations the definition of CVaR (as shown
in Definition 2), we can have the following safety bounds,

CVaRδa
f
(X) =

µ( 1−η
2 ) + σϕ

[
Φ−1( 1+η

2 )
]

1− F
(
δaf

)
=

µ( 1−η
2 ) + σϕ

[
Φ−1( 1+η

2 )
]

1−η
2

= µ+
σϕ
[
Φ−1( 1+η

2 )
]

1−η
2

.

(B). The second side safety bound via CVaR:
With proof of the first side CVaR safety bound, we can

easily have the second side CVaR safety bound, which is
shown as follows:∫ −δb

f

−∞
xf(x)dx = E[z < (−δbf − µ)/σ]

=

∫ (−δb
f−µ)/σ

−∞
(µ+ σz)ϕ(z)dz

=

∫ (−δb
f−µ)/σ

−∞
µϕ(z)dz +

∫ (−δb
f−µ)/σ

−∞
(σz)ϕ(z)dz

= µΦ
[(
−δbf − µ

)
/σ
]
+ σ

∫ (−δb
f−µ)/σ

−∞
zϕ(z)dz

= µ(
1− η

2
)− σϕ

[(
−δbf − µ

)
/σ
]

= µ(
1− η

2
)− σϕ

[
Φ−1(

1− η

2
)

]
,



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 8

0.0 0.2 0.4 0.6 0.8 1.0
Safe Probability

34

36

38

40

42

44

46

Sa
fe

ty
 B

ou
nd

 (m
)

CVaR Safety Bound for Stochastic Equality Constraints
Lower Safety Bound (mean = 0, standard deviation = 2)
Upper Safety Bound (mean = 0, standard deviation = 2)

(a)

0 5 10 15 20
Mean (m)

15
20
25
30
35
40
45

Sa
fe

ty
 B

ou
nd

 (m
)

CVaR Safety Bound for Stochastic Equality Constraints
Lower Safety Bound (safe probability = 99%, standard deviation = 2)
Upper Safety Bound (safe probability = 99%, standard deviation = 2)

(b)

0 2 4 6 8 10
Standard Deviation

10

20

30

40

50

60

70

Sa
fe

ty
 B

ou
nd

 (m
)

CVaR Safety Bound for Stochastic Equality Constraints
Lower Safety Bound (safe probability = 99%, mean = 0)
Upper Safety Bound (safe probability = 99%, mean = 0)

(c)

Fig. 5: CVaR safety bounds on a manifold for equality
constraints in terms of safe probability (a), constraints’ mean
(b), and constraints’ standard deviation (c).

CVaR−δb
f
(X) =

µ( 1−η
2 )−σϕ[Φ−1( 1−η

2 )]
F(−δb

f)

=
µ( 1−η

2 )−σϕ[Φ−1( 1−η
2 )]

1−η
2

= µ− σϕ[Φ−1( 1−η
2 )]

1−η
2

.

Thus, we can have CVaR safety bound for equality con-
straints in terms of safe probability, constraints’ mean and
constraints’ standard deviation, as shown in Figure 5.

In the following section, we will introduce a practical
algorithm aimed at effectively addressing and managing these
stochastic constraints.

C. Practical Algorithm

Building upon the theoretical foundations outlined earlier,
we have devised a practical algorithm, as detailed in Algo-
rithm 1, designed to ensure safety in complex environments
characterized by stochastic constraints. The algorithm unfolds
in three key steps. Initially, stochastic constraints are formu-
lated within the framework of a manifold. Subsequently, safety
bounds are computed through the utilization of VaR and CVaR
metrics. Finally, the algorithm projects the safe operational
space onto the manifold and orchestrates the search for a
secure policy that adheres to the stochastic constraint manifold.

Notably, to simplify computation, we leverage Gaussian
noises to represent stochastic constraints ϵi(q), which can
be easily learned via Gaussian processes [47]. As shown in
Equation (27), f represents the stochastic constraints that
equal stochastic constraints ϵi(q) plus deterministic con-
straints ci(q), and we need to compute f ’s safety bounds given
ci(q) and ϵi(q).

f = ci(q) + ϵi(q) ϵi(q) ∼ N
(
0, σ2

n

)
. (27)

The stochastic constraints are assumed as independent, and
the constraints are subject to independent distributions.

Algorithm 1 Searching a RObust Safe Policy on a Stochastic
COnstraint Manifold (ROSCOM)

1: Input stochastic constraints ci(q) + ϵi.
2: Initialise a policy.
3: for k = 0, 1, . . . , T do
4: Compute the stochastic constraints ci(q) + ϵi at each

step.
5: Compute the VaR and CVaR bounds for high dimen-

sional inequality and equality constraints.
6: Project the safety bounds into the manifold space

c(q,µ).
7: Compute the Jacobian matrix Ji(q,µs) =[

∂
∂qJi(q,µs)

⊤, ∂
∂µJi(q,µs)

⊤
]
∈ R(n+N)×N .

8: Compute the null space N(q,µs).
9: Sampling trajectories on a tangent space of a con-

strained manifold with RL algorithms.
10: Compute action ak = Λ(q̈k) based on ATACOM.
11: Deploy action ak in the environment and provide the

reward and observation to the RL algorithm.
12: end for

V. EXPERIMENTS

In this section, we conduct a series of experiments with
the primary objective of evaluating the effectiveness of our
proposed method. Furthermore, we undertake a comparative
analysis to assess the performance of our approach in relation
to existing SOTA safe RL baselines.

Specifically, we first compare our method with ATA-
COM [1] on circular motion tasks. Furthermore, to com-
prehensively evaluate the effectiveness of our methods, we
compare our method with ATACOM and traditional CMDP
algorithms on challenging air-hockey tasks. Generally, ATA-
COM requires constraint information, which is leveraged to
guarantee safety most rigorously. For example, the constraint
information is human posture in a human-robot interaction
environment. However, traditional CMDP algorithms do not
require constraint information, and they ensure safety by
try-and-error learning, which could be helpful in uncritical
safety environments. The representative SOTA algorithms of
traditional CMDP settings are CPO [2], PCPO [3], and so on.

The environment settings are provided in Appendix VII-A
and details of implementation are introduced in Ap-
pendix VII-B

A. Circular Motion Tasks

In the circular motion task, a robot must run on the blue
circle as shown in Figure 6. If the robot runs away from the
circle, it will incur a cost. However, the constraint is stochastic.
The blue circle denotes the original constraint, the blue points
denote the stochastic constraints, and the two green circles
denote the safety bounds via VaR, the two red circles represent
the safety bounds via CVaR for the new constraints.

1) Compare with ATACOM: The experimental results are
presented in Figures 7 (a) and (b), where cavg denotes
the average cost of each trajectory, J denotes the reward
performance, ROSCOM-PPO and ATACOM-PPO [1] denote
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Fig. 7: Compare our method with ATACOM [1] on a circular
motion task regarding safety (lower values signify superior
performance) and reward (higher values indicate better per-
formance) performance.

our ROSCOM with PPO methods [48], and ATACOM with
PPO methods. Although the ATACOM method presents re-
markable performance for ensuring robot learning safety, a
comparative analysis of experimental outcomes suggests that
our proposed methodology outperforms ATACOM. More pre-
cisely, the proposed method demonstrates superior reward and
enhanced safety performance while taking into consideration
the stochastic constraints.
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X
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0.5
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Y

Fig. 6: Safety bounds on a
stochastic constraint manifold.
The green and red circles de-
note the safety bounds via VaR
and CVaR. In stochastic con-
straints with Gaussian param-
eters, the mean is 0, the stan-
dard deviation is 0.05, and the
safety probability is 99%.

2) Compare with
Traditional CMDP
Algorithms: In Figure
8, we present the results
of comparison experiments
focused on tasks involving
circular motion. Specifically,
as depicted in Figure 8(a),
our proposed method not
only maintains rigorous
safety standards but also
significantly outperforms
traditional safe RL baselines,
including representative
baselines CPO [2] and
PCPO [3]. These baselines
fail to consistently ensure
safety during the learning
process. Further, Figure 8(b)

illustrates that our method achieves performance comparable
to that of the safe RL baselines. These experimental
results demonstrate that our approach consistently surpasses
traditional safe RL baselines in terms of the balance between
safety and reward performance, indicating its efficacy and
reliability in safe RL applications.

B. Air-Hockey Tasks

In the Air-Hockey task, as shown in Figure 9, the robot
needs to learn to manipulate its hand and hit a lightweight
plastic puck to score goals. However, due to noises, e.g., sensor
measurement errors, the table height estimation by sensors can
vary randomly. To prevent the robot from colliding with the
table and causing damage to the robot and the table, we need
to compute safety bounds for robot learning, so that the robot
can complete the task safely, even with stochastic constraints.
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Fig. 8: Compare our method with traditional CMDP methods,
CPO [2] and PCPO [3], on a circular motion task regarding
safety and reward performance.

1) Compare with ATACOM: As depicted in Figure 10,
we compare our method with ATACOM, the experimental
results demonstrate that our method is better than ATACOM
in terms of safety and reward performance, e.g., the average
cost value of trajectories is lower than ATACOM (Figure 10
(a)), and reward value is higher than ATACOM (Figure 10
(b)). The results indicate that our method can be more rigor-
ous than ATACOM to ensure safety for critical applications.

Fig. 9: An Air-Hockey task
environment.

2) Compare with
Traditional CMDP Algorithms:
In order to provide a
comprehensive evaluation
of the efficacy of our proposed
method, we extend our

assessment by conducting comparative experiments.
Specifically, we compare our method with SOTA
representative safe RL baselines, including CPO [2] and
PCPO [3].

The evaluation results, as depicted in Figure 11, reveal the
remarkable superiority of our method in comparison to SOTA
baselines regarding safety and reward performance. Firstly, our
method exhibits significantly improved safety performance,
as evidenced by the average cost values of each trajectory,
as illustrated in Figure 11 (a). Secondly, in terms of reward
performance, our approach outperforms the strong baselines,
as demonstrated by Figures 11 (b) and (c), with Figure 11 (c)
providing an enlarged view of Figure 11 (b) in terms of SOTA
baselines’ reward performance. Our methodology’s capability
to achieve superior outcomes is clearly demonstrated, showing
its potential for robust and safe RL real-world applications.

The distinct superiority of our method over traditional
algorithms can be attributed to several key elements integrated
within our approach. Firstly, the constrained space is leveraged
to construct a constrained manifold, a feature that proves to be
instrumental in facilitating efficient high-dimensional learning.
Secondly, the tangent space of the constrained manifold is ex-
plicitly established for policy searching. It provides a rigorous
safety assurance mechanism within the policy search process.
By operating within the tangent space, the policy search is
inherently aligned with safety protocols, ensuring that each
iteration adheres to safety constraints.

These key points collectively contribute to the significant
performance improvement of our method, positioning it as
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Fig. 10: Compare our method with ATACOM [1] on the Air-
Hockey task.
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Fig. 11: Compare our method with traditional CMDP methods,
CPO [2] and PCPO [3], on the Air-Hockey task. Figure (a)
shows the safety performance, Figures (b) and (c) show the
reward performance.

a notably better solution than traditional algorithms, and
promising enhanced safety and efficiency in complex, high-
dimensional learning environments.

Influence of Safety Bounds on Reward Performance:
(1) In our experiments, the safety bound significantly reduces
learning oscillations during policy search, enhancing overall
policy performance. For example, in the circular motion task,
the state space’s stochastic noise can lead to policy oscillations
in the baseline algorithm such as ATACOM, subsequently
degrading policy performance. Similar effects are observed
in air hockey tasks. Unlike these methods, our approach
establishes a stable safety bound that accommodates the un-
certainty of the state space. This allows for more effective
policy exploration than baseline methods, thereby improving
safety and reward performance. (2) Compared to traditional
safe RL methods, our approach is developed on constrained
manifolds. This design facilitates safe exploration within the
tangent space and guides the policy toward a higher-quality
outcome. Consequently, our method achieves superior safety
and reward performance relative to traditional approaches.

VI. CONCLUSION

In this paper, we investigated the problem of robust safe
RL on stochastic constraint manifolds. Prior safe RL research
has focused on deterministic constraints, whereas in this paper
we considered stochastic constraints. First, we formulated
the robust safe RL problem by considering the stochastic
constraints. Second, we ensured safety by leveraging the risk
measurement methods, e.g., VaR and CVaR. Safety bounds
are computed on the stochastic constraint manifold to help
search for a safe policy. Finally, we evaluated our method
on the circular motion and Air-Hockey tasks. The experiment
results demonstrate that our algorithm can achieve remarkable
performance in terms of learning safety, and show better

reward performance than the SOTA baselines. In the Future,
we plan to investigate the model’s efficiency and try to deploy
our method in real-world robot control.
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Appendix

VII. DETAILS OF EXPERIMENTS

A. Environment Settings

Circle Motion Environments. In this task, the robot needs
to run as fast as possible to reach the goal position while
satisfying safety constraints. As shown in the following equa-
tions, R(Xt, Yt) denotes the reward value when the robot is
at position (Xt, Yt), Xt denotes the robot X-axis direction
position and Yt denotes its Y-axis direction position, similarly,
(Xg, Yg) denotes the goal position, ϵ denotes the stochastic
constraints, and Cinequality denotes the inequality constraints.
other settings are similar to ATACOM [1].

R(Xt, Yt) = exp(−
√
(Xt −Xg)2 + (Yt − Yg)2) (28)

C(Xt, Yt) = |
√
X2

t + Y 2
t − (1 + ϵ)|+ Cinequality (29)

Cinequality =

{
|Yt + 0.5 + ϵ|, Yt < −(0.5 + ϵ),

0, Others.
(30)

Air-Hockey Environments.
Other reward and constraint settings of the task are same

to ATACOM [1], except for Equation (31), Ztable denotes the
table height, Zt denotes the robot Z-axis direction position,
puck height is 0.0149m. We provide more experiments to
evaluate the effectiveness of our method regarding the different
safety limits, as shown in Figure 12, the experiment results
indicate that our method can perform remarkably better than
SOTA safe RL baselines regarding reward and safety perfor-
mance, and confirm the effectiveness of our method again.
The implementation of CPO and PCPO from a repository
of safe RL baselines 1 is used to carry out the comparison
experiments.

Our method outperforms the SOTA safe RL baselines be-
cause the safety constraints are learned and projected on a
Manifold space, which means our algorithm can receive the
safety and task environment information in advance, which
could help our method better search policy while satisfying
safety constraints.

Cinequality =

{
|Zt − (Ztable + ϵ)|, Zt < (Ztable + ϵ),

0, Others.
(31)
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Fig. 12: Compare our method with traditional CMDP methods,
CPO [2] and PCPO [3], on the Air-Hockey task with different
safety bounds. Figure (a) shows the safety performance, Fig-
ures (b) and (c) show the reward performance.

Parameters value Parameters value

actor lr 3e-4 critic lr 3e-4
batch size 64 gamma 0.99

horizon 500 epoch 50
eps ppo 0.1 noise ϵ mean 0

η 99% noise ϵ std 0.5
network MLP regular relu & linear

NN features [32, 32]

TABLE I: ROSCOM and ATACOM hyparameters used in
Circle Motion experiments.

Parameters value Parameters value

actor lr 3e-4 critic lr 3e-4
batch size 64 gamma 0.99

horizon 3000 epoch 200
eps ppo 0.1 noise ϵ mean 0

η 99% noise ϵ std 0.5
network MLP regular relu & linear

NN features [64, 64]

TABLE II: Algorithms’ hyparameters of ROSCOM, ATA-
COM, CPO, PCPO, used in Air-Hockey experiments. Safety
bound δ used for CPO and PCPO in Figures 8 and 11 is 25,
and in Figure 12 is 5.

B. Details of Implementing Experiments

The parameters used in our experiments are provided in
Tables I and II.
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