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Abstract— Humans can classify deformable materials accord-
ing to their hardness similarity, but existing robotic approaches
focus on hardness recognition or absolute hardness prediction.
In this work, we investigate hardness similarity detection
using a vision-based tactile sensor (VBTS) and evaluate three
methods: optical flow features and support vector machine
(SVM) classifier, DINOv2 features and SVM classifier, and
convolutional long short term memory (ConvLSTM) network
trained with categorical cross-entropy loss. To evaluate these
methods, we created a dataset of over 200 videos by pressing
a GelSight Mini sensor, attached to a Franka-Panda robot, on
five silicone objects of varying hardness, and also conducted
a human-participant study showing humans achieved 80.25%
average accuracy in hardness similarity detection. The three
methods achieved average accuracies of 77.66%, 67.00%, and
70.00% with 15 samples per object, demonstrating that a VBTS
can effectively classify objects based on hardness similarity.

I. INTRODUCTION

Touch sensing is essential for humans and robots, enabling
the perception of object properties and precise manipulations.
One of the most important properties perceived through
touch is hardness. The ability to detect an object’s hardness
can help robots to effectively perform several tasks such
as sorting waste, harvesting fruits, and handling delicate
objects. Prior works have addressed tactile hardness detection
through two problems: Hardness prediction, which estimates
the absolute hardness of a test object (e.g., on the Shore
hardness scale), and hardness recognition, which identifies
a reference hardness class with the same hardness as the
test object. We consider the problem of hardness similarity
detection, where an agent selects the reference object closest
in hardness to a given test object from a set of reference
objects with varying hardness levels.

Prior works on the hardness prediction task [1]–[3] used
labelled datasets of thousands of tactile samples with corre-
sponding ground-truth absolute hardness values and trained
a deep neural network to regress the absolute hardness
of objects. However, given the variety of tactile sensors,
creating such labelled datasets is difficult. Prior works on
the hardness recognition task [4]–[7] have used piezoelectric
sensing patches [4], pressure sensors [5], [6], or tactile array
sensor [7] to collect 50–100 tactile samples from a set of
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Fig. 1. (a) In our robot experiments, a Franka-Emika Panda robot uses
a GelSight Mini sensor mounted on the robot’s end-effector to explore
hardness of objects. (b) The image captured by GelSight Mini sensor
before making contact with the object. (c) The image captured by GelSight
Mini sensor after contact with the object. (d) In our human participant
experiments, the humans explored hardness of objects using their index
finger. (e) The set of sample objects used in our experiments: five silicone
objects of different shape in increasing hardness from left to right.

reference objects and trained classifiers with these samples.
In this work, we investingate the effectiveness of a Vision-
Based Tactile Sensor (VBTS) for the task of sample-efficient
hardness similarity detection. VBTSs provide a cost-effective
and high-resolution alternative to traditional tactile sensors.
They also allow leveraging the advancements in camera
technology and computer vision.

II. HARDNESS SIMILARITY DETECTION WITH
VISION-BASED TACTILE SENSORS

When a VBTS like the GelSight Mini is pressed against a
deformable object, changes in color intensity and displace-
ment of embedded markers on the gelpad (Fig. 1b-c) reflect
the object’s hardness, with the recorded videos also encoding
temporal information. We investigate three methods for the
task of hardness similarity detection from VBTS videos.

Method 1: Optical Flow and Support Vector Machine (SVM)
Classifier

Optical flow aims to capture the apparent motion of each
patch of pixels between subsequent frames. We utilize the
Shi-Tomasi corner detector [8] to select points of interests,
i.e. dots on the gelpad, and apply the optical flow estimation
method proposed by Lucas and Kanade [9]. We concatenate



(a) Evaluation on our dataset (b) Evaluation on Yuan et al. [1]’s dataset

Fig. 2. Boxplots displaying the hardness similarity detection accuracies from 10 evaluation rounds (30 trials in each round). Each trial consists of two
reference objects and one test object. The colored dots indicate the individual accuracies for each of the 10 rounds per method. The red dotted line shows
the average human performance on the objects in our dataset.

the optical flow features for each frame in a video and train a
Support Vector Machine (SVM) classifier on the videos from
the reference objects. We then use the trained SVM classifier
to predict the hardness class of videos collected from the test
object and apply majority voting to assign the test object to
the closest reference object.

Method 2: DINOv2 Features and SVM Classifier

Instead of employing pre-defined feature representations,
such as optical flow, we can utilize pretrained large-scale
vision foundational models to extract learned features. In
this method, we utilize the DINOv2 [10] model for feature
extraction from VBTS videos. DINOv2 is a self-supervised
model utilizing Vision Transformer architecture, trained to
extract high-dimensional features from images through self-
distillation and clustering techniques. Similar to method 1,
we train an SVM classifier on the concatenated DINOv2 fea-
tures extracted from the VBTS videos of reference objects.

A. Method 3: Convolutional Long Short Term Memory
(ConvLSTM) Network

In this method, we use a deep neural network based on
the ConvLSTM architechure to extract features from VBTS
videos. A ConvLSTM [11] network combines the strengths
of Convolutional Neural Network (CNN)s and Long Short
Term Memory (LSTM) networks, enabling the model to han-
dle spatiotemporal data by capturing both spatial features and
temporal dependencies. We design a neural network of four
stages, each consisting of a ConvLSTM layer, a MaxPooling
layer as well as a Dropout of 20% on the recurrent state
during training. To generate class probabilities, we flatten the
output of the last stage and feed it into a dense layer with
softmax activation. We train this network using categorical
cross entropy loss for 100 epochs on the videos collected
from the reference objects. In contrast to Method 1 and
Method 2, this method learns the feature extraction and
classification steps simultaneously.

III. EVALUATION

We evaluate the methods described in Section II for the
task of hardness similarity detection. For our experiments, we
consider the following scenario: the agent needs to select the
reference object closest in hardness to a test object from a
set of two reference objects. We created a set of five silicone
objects, shown in Fig. 1e, of varying hardness levels. As
shown in Fig. 1a, we mounted a GelSight Mini sensor on a
robot arm to record videos of the sensor pressing on object
surfaces with varying velocities and forces. We conduct three
sets of experiments: first, evaluating the three methods on
our dataset, second, a human-participant experiment to assess
the human performance on the same task [12], and third,
evaluating the three methods on a dataset collected by Yuan
et al. [1], specifically on samples from the cuboid objects.

Fig. 2 shows the accuracies the of the methods for different
sample sizes. We find that the optical flow features and
SVM classifier outperform other methods on our dataset, but
none surpass the human performance level. We also observed
that all three methods and the human participants perform
poorly when the hardness of the test object is between the
hardness levels of the reference objects. Surprisingly, on
Yuan et al. [1]’s dataset, DINOv2 features and SVM classifier
performs the best. One possible explanation is that Yuan et
al.’s dataset has more color intensity fluctuations and edges,
leading to better DINOv2 features.

IV. CONCLUSION AND FUTURE WORK

We evaluated three methods for the task of hardness sim-
ilarity detection with a VBTS: a traditional video classifica-
tion method, a deep-learning method, and a vision foundation
model. Our evaluations on two datasets demonstrate the
strengths and weaknesses of these methods. In the future, we
will evaluate the methods in multi-class hardness similarity
detection scenarios. Also, we will investigate active sampling
strategies (e.g. entropy and variance strategies from [13]) for
improving the sample efficiency of these methods.
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