
Active Sampling for Hardness Classification with Vision-Based Tactile
Sensors

Junyi Chen1, Alap Kshirsagar1, Frederik Heller1, Mario Gómez Andreu1, Boris Belousov2, Tim Schneider1,
Lisa P. Y. Lin3, Katja Doerschner3, Knut Drewing3 and Jan Peters1,2,4,5

Abstract— Hardness is a key tactile property perceived by
humans and robots. In this work, we investigate information-
theoretic active sampling for efficient hardness classification
using vision-based tactile sensors. We assess three probabilistic
classifiers and two uncertainty-based sampling strategies on a
robotic setup and a human-collected dataset. Results show that
uncertainty-driven sampling outperforms random sampling
in accuracy and stability. While human participants achieve
48.00% accuracy, our best method reaches 88.78% on the same
objects, highlighting the effectiveness of vision-based tactile
sensors for hardness classification.

I. INTRODUCTION

Robots are increasingly deployed across various domains,
from manufacturing to healthcare, where they interact with
objects and rely on sensory feedback to guide their actions.
A key challenge in robotics is accurately perceiving object
properties. This work focuses on one fundamental property
sensed through touch: hardness. Specifically, we explore
active sampling strategies for efficient hardness classifica-
tion using a Vision-Based Tactile Sensor (VBTS). VBTSs,
such as GelSight Mini [1] and FingerVision [2], offer a
high-resolution, cost-effective alternative to traditional tac-
tile sensors while benefiting from advancements in camera
technology and computer vision.

In this work, we investigate information-theoretic active
sampling strategies for efficient hardness classification. The
robot is tasked with classifying a "test object" into one
of the reference classes based on its hardness, using as
few touches of a VBTS as possible (see Fig.1). The robot
has no prior knowledge of the objects and can collect
multiple samples by touching both the test and reference
objects. In prior work, Boehm et al. [3] explored active
sampling strategies for texture recognition using a VBTS.
While Boehm et al. framed texture recognition as an image
classification problem, hardness classification with a VBTS
involves processing a sequence of frames [4], [5], making it
a more complex task.

We provide new empirical evidence on the effectiveness
of model-uncertainty-based active sampling strategies for
hardness classification with a VBTS. We first compare three
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Fig. 1: The hardness classification task requires the agent
to classify the test object into one of the reference classes
based on hardness level. (a) The robot uses a GelSight Mini
sensor mounted on its end-effector to explore the hardness
of objects. The image captured by the sensor is shown in
the inset. (b) Our dataset consists of GelSight Mini videos
collected from five silicone objects of different shapes in
increasing hardness from left to right. (c) In our human
participant study, participants explored the test object (blue
plate) and the reference objects (black plates) with their index
fingers to compare hardness.

probabilistic classifier architectures on two datasets: our
dataset containing videos collected by a robot pressing a
GelSight Mini sensor on five silicone objects of different
hardness levels (see Fig. 1) and the dataset created by
Yuan et al. [6] containing videos obtained by human testers
pressing an older version of the GelSight sensor on different
silicone objects. Then, we implement and evaluate the active
sampling strategies with the most promising model for each
dataset. We also conduct a human-participant study to assess
the performance of our method vis-à-vis human performance
on the hardness classification task.

II. METHOD

We seek to investigate sample-efficient hardness classifica-
tion using vision-based tactile sensors. The agent first trains
the classifier model on a small number of initial samples
collected from the reference objects (5 per object in our ex-
periments). Following this initial training, the agent decides
on the next reference object to collect more samples based
on the model’s uncertainty. The agent queries the model



repeatedly with the same test samples and estimates the
model’s uncertainty from the distribution of the predictions
generated due to the dropout layers. Similar to Boehm et
al. [3], we compare two uncertainty metrics—entropy and
variance—obtained from the classifier’s predictions on the
samples collected from the test object. To manage the size
of training data, we introduce reservoir sampling to the active
sampling strategies considered in [3]. Initially, the model is
trained on a training reservoir and subsequently retrained in
execution time with selected reference samples added to the
reservoir to adapt to new data.

III. EVALUATION

We seek to evaluate the effectiveness of active sampling
strategies for the hardness classification task and also com-
pare their performance with human performance. To do so,
we first evaluate the three classifier models on our dataset
and a previously published dataset. Then, we test the active
sampling strategies with the best model for each dataset.
Finally, we conduct a human-participant study to estimate
the hardness classification accuracy of humans on the objects
in our dataset.

A. Datasets

We tested our hardness classification method on two
datasets: a dataset that we created containing five hardness
classes, where we sample 5 frames for each video, and a
dataset created by Yuan et al. [6] containing nine hardness
classes, where we sample 3 frames per video.

B. Classifier Architectures

We implement three probabilistic classifiers for the task
of hardness classification from VBTS videos. The first
model, Optical Flow Features and Neural Network Classifier
(OFNN), classifies video data using Lukas-Kanade motion
features [7] and a 2-layer neural network with dropout. The
second model, DINOv2 Features and Neural Network Clas-
sifier (DINOv2NN), uses pre-trained DINOv2 [8] to extract
visual features from video frames, which are classified by
a 2-layer neural network with dropout. The third model,
Convolutional Long-Short Term Memory Network (ConvL-
STM) [9], combines CNN for spatial feature extraction and
LSTM for temporal learning.

C. Hyperparameters

We set the initial and per-iteration sample count to five.
Our dataset was harder to classify than the Yuan dataset, so
we used 100 initial training epochs and 50 epochs per itera-
tion for our dataset and 50 and 25 epochs, respectively, for
the Yuan dataset. Due to GPU constraints, we limited training
samples per iteration to 80 for OFNN and DINOv2NN, and
40 for ConvLSTM, which required more memory.

D. Model Baselines

We first compare the performance of the three classifier
models—OFNN, DINOv2NN, and ConvLSTM—trained with
the initial samples without any active sampling on both
datasets, to decide which model is used on the respective

dataset. Each model is trained on five samples per class and
evaluated on five validation samples per class. We find that
ConvLSTM outperforms the other two models on our dataset,
achieving a validation accuracy of 42%, DINOv2NN follows
close behind with an accuracy of 38%, and OFNN performs
the worst with a validation accuracy of only 27%. On the
Yuan dataset, DINOv2NN outperforms the other two models,
achieving a validation accuracy of 59%, ConvLSTM is next
with an accuracy of 46%, and OFNN performs the worst
with a validation accuracy of only 24%.

E. Active Sampling Performance

We test both information-theoretic active sampling strate-
gies (entropy and variance) and compare them to the random
sampling baseline on our dataset and the Yuan dataset, with
the best-performing classifier models, i.e., ConvLSTM for
our dataset and DINOv2NN for the Yuan dataset. On both
datasets variance strategy achieved the highest accuracy and
the lowest MAE.

F. Human Study

We conducted a human study with ten participants for
hardness classification with the objects in our dataset. Each
trial included a practice round and five test rounds, where
blindfolded participants used only their index fingers to iden-
tify one of five reference objects that matched the hardness
of a test object. Each participant classified five different
test objects with shuffled reference sequences. As shown
in Table I, the Convolutional Long Short Term Memory
(ConvLSTM) classifier outperforms the human participants,
both with and without the active sampling strategies, on the
same set of objects.

Humans No Resampling Variance Entropy Random
48.00%
±22.27%

57.20%
±37.25%

88.78%
±26.85%

85.79%
±25.85%

83.26%
±30.84%

TABLE I: Comparison of the hardness classification ac-
curacies on our dataset. Humans denotes the accuracy of
the human participants in our study (see Sec. III-F). No
Resampling denotes the accuracy of the ConvLSTM classifier
with five initial samples per class (see Sec. III-D). For the
three active sampling strategies, the accuracies shown are
after 5 sampling iterations.

IV. CONCLUSION

We investigated the performance of a model-uncertainty-
based approach to active sampling for hardness classification
with a VBTS. We evaluated different classifier architectures
and active sampling strategies to find out the choices that
maximize classification accuracy. Future works could focus
on sample-efficient hardness classification of complex ob-
jects with multi-modal data such as proprioceptive, visual,
and tactile data.
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