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Abstract— This paper presents an approach to robotic in-
hand object pose estimation, combining visual and tactile in-
formation to accurately determine the position and orientation
of objects grasped by a robotic hand. We address the challenge
of visual occlusion by fusing visual information from a wrist-
mounted RGB-D camera with tactile information from vision-
based tactile sensors mounted on the fingertips of a robotic
gripper. Our approach employs a weighting and sensor fusion
module to combine point clouds from heterogeneous sensor
types and control each modality’s contribution to the pose
estimation process. We use an augmented Iterative Closest
Point (ICP) algorithm adapted for weighted point clouds to
estimate the 6D object pose. Our experiments show that
incorporating tactile information significantly improves pose
estimation accuracy, particularly when occlusion is high. Our
method achieves an average pose estimation error of 7.5 mm
and 16.7 degrees, outperforming vision-only baselines by up
to 20%. To validate the practical applicability of our method,
we conducted an insertion task experiment, demonstrating the
ability to perform precise object manipulation in a real-world
scenario.

I. INTRODUCTION
In-hand pose estimation describes the process of determin-

ing the position and orientation of an object held within a
robotic hand. This capability is crucial for robotic object ma-
nipulation and assembly tasks. To address this challenge, re-
searchers have explored various approaches using visual and
tactile information. Vision-based methods typically employ
RGB or RGB-D cameras and use techniques such as feature
and template matching [1], [2], point cloud registration [3],
and machine learning approaches [4], [5]. However, these
methods often struggle with occlusion caused by the grasping
hand. Tactile-based approaches leverage different types of
tactile sensors to infer object poses. Recent developments
in camera-based high-resolution tactile sensing technologies
like GelSight [6] and DIGIT [7] have enabled new methods
in this domain [8]–[10].

Visuotactile-based approaches combine the strengths of
both visual and tactile methods to enhance pose estimation
accuracy and robustness [11], [12]. These approaches face
the challenge of fusing dissimilar sensor modalities, often
employing techniques such as extended Kalman filters [13]
or neural networks [11], [14]. Some methods obtain an initial
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Fig. 1. (a): We used the Franka Research 3 robotic arm with a parallel
gripper equipped with GelSight Mini sensors and a RealSense D405 depth
camera. (b): A tool grasped by the gripper and its estimated pose along
with the point clouds obtained by the sensors. (c): Objects used in our
experiments: Knob, Handle, SL-Block, Screwdriver

pose estimation based on visual data and then refine it using
tactile information [15], [16].

This work presents a novel approach to robotic in-hand ob-
ject pose estimation that integrates both visual and tactile in-
formation. Unlike many current pose estimation approaches
that rely on deep learning techniques or require extensive
training and large datasets, our method focuses on one-shot
pose estimation without relying on learning-based algorithms
or initial pose estimates. By utilizing a registration algorithm,
we aim to create a flexible and adaptable approach for in-
hand pose estimation that can be applied to new objects
without extensive training or data collection.

II. PROPOSED METHOD

Our proposed method for robotic in-hand pose estimation
combines visual and tactile sensor data to achieve accurate
and robust results. We preprocess point clouds obtained by
a depth camera and vision-based tactile sensors, fuse and
apply different weights to the point clouds from different
sources, and use an augmented Iterative Closest Point (ICP)
algorithm adapted to handle weighted point clouds.

A. Data Processing

We use an Intel RealSense D405 Depth Camera attached
to the end effector and directed towards the gripper (Fig. 1a).
The camera provides an RGB color image and a depth
stream, which is converted into a point cloud. This point
cloud is segmented and filtered in subsequent steps, to obtain
the points belonging to the object.



Fig. 2. (a): Rotation and translation error of each pose estimation attempt using
the object specific weight. (b): The average improvement achieved by combining
tactile and visual information compared to using visual information alone.

TABLE I
RESULTS FROM THE INSERTION TASK EXPERIMENT FOR

DIFFERENT TOOL ANGLES AND RESULTING OCCLUSION.
COMPARING PERFORMANCE OF USING VISION DATA ONLY

(VIS) AND VISUOTACTILE INFORMATION (VIS+TAC).

Tool Angle Vis Vis+Tac Occ.
0° ✓ ✓ ✓ ✓ 80%

-5° ✓ ✓ ✓ ✓ 82%
-10° ✓ ✓ ✓ ✓ 85%
-15° ✓ ✓ ◦ ✓ 86%
-20° ◦ ◦ ✓ ✓ 86%
-25° ◦ ✓ ✓ ✓ 88%
-30° ◦ ◦ ✓ ◦ 89%
-35° ◦ × ✓ ◦ 93%
-40° × × × ✓ 98%
-45° ◦ × ✓ ✓ 98%
-50° × × ✓ ✓ 98%

Both fingers of the gripper are equipped with a GelSight
Mini sensor, which provides details about the contact and
local geometry of the grasped object. We reconstruct the
deformation of the sensors’ gel surface and generate a point
cloud representing the local geometry of the grasped object.

B. Sensor Fusion and Point Cloud Weighting

We obtain two point clouds, one from the tactile module
and one from the camera module. Based on the sensor
modality, we assign a label and weight to each point to
determine the influence each sensor modality should have
during the subsequent pose estimation process. We fuse the
sensor data by concatenating the individual point clouds into
a new single point cloud while keeping track of each point’s
corresponding sensor modality and assigned weight.

C. Point Cloud Registration

We address the problem of object pose estimation with
a point cloud registration algorithm to align the mesh of
the original object with the point clouds obtained from the
employed sensors (Fig. 1b). We augmented the conventional
Iterative Closest Point (ICP) [17], [18] algorithm to allow
for aligning weighted point clouds, accommodating multi-
ple sensor modalities, and thus determining their influence
during the alignment process. Since the ICP algorithm’s
success is dependent on the quality of the initial alignment,
the registration is performed multiple times with varying
initialization transformations.

III. EXPERIMENTS AND RESULTS

We conducted three experiments to evaluate our method.
We tested on different objects with differing geometric
features and shape (Fig. 1c). We compared the performance
when using visual information only with the performance
when employing a camera and tactile sencors combined.

(1) Weighting Strategy: We investigated the optimal
weighting ratio between visual and tactile sensor modalities
to achieve the highest accuracy in pose estimation. Results
showed that the pose estimation outcome is influenced by

the weighting of the sensor modalities and that the optimal
weights varied for different objects. For the objects used in
this experiment, we determined the following optimal vision-
to-tactile weight ratios: Knob: 1:12.5; Handle: 1:3.5; SL-
Block: 1:0.5. Further, we investigated dynamic weighting
strategies to adapt weight ratios based on point cloud metrics
such as occlusion and noise. While we were not able to
formulate a universal dynamic weighting strategy, the results
indicate a strong potential for improvement through such an
adaptive system.

(2) Object Pose Estimation: We evaluated the accuracy
and reliability of our method, investigated the benefit of
combining visual and tactile information, and explored the
impact of visual occlusion (Fig. 2). Incorporating tactile
data reduced the average translation error from 9.44 mm
to 7.50 mm, and rotation error improved from 21.09° to
16.70°. We observed a strong positive correlation between
pose estimation error and visual occlusion of the object
(r(157) = .590, p < .001). Especially in cases of high
occlusion the additional tactile data provided significant
improvement compared to the vision-only condition.

(3) Insertion Task: We performed a practical inser-
tion task to demonstrate the real-world applicability of our
method. A screwdriver was grasped at varying angles and
inserted into a hole under different occlusion conditions.
With low occlusion levels, visual information alone was
sufficient to successfully insert the tool. However, in cases
of high visual occlusion, the additional tactile information
was necessary to compensate for missing visual features to
allow successful insertions of the screwdriver (see Table 1).

IV. CONCLUSION

Our research has shown that combining visual and tactile
information can significantly improve pose estimation ac-
curacy and robustness compared to vision-only approaches.
The addition of the tactile modality is particularly effective
in scenarios with high visual occlusion. Future work could
focus on developing an adaptive weighting strategy and
testing the method on a wider variety of objects.
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