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Abstract— Training robot policies in simulation is becoming
increasingly popular; nevertheless, a precise, reliable, and easy-
to-use tactile simulator for contact-rich manipulation tasks is
still missing. To close this gap, we develop TacEx – a modular
tactile simulation framework. We embed a state-of-the-art soft-
body simulator for contacts named GIPC and vision-based
tactile simulators Taxim and FOTS into Isaac Sim to achieve
robust and plausible simulation of the visuotactile sensor Gel-
Sight Mini. We implement several Isaac Lab environments for
Reinforcement Learning (RL) leveraging our TacEx simulation,
including object pushing, lifting, and pole balancing. We vali-
date that the simulation is stable and that the high-dimensional
observations, such as the gel deformation and the RGB images
from the GelSight camera, can be used for training. The
code, videos, and additional results will be released online
https://sites.google.com/view/tacex.

I. INTRODUCTION

Tactile sensing plays an important role for human per-
ception of touch [1] and for advanced manipulation tasks in
robotics [2]–[4]. Contact properties such as contact geometry,
object stiffness, and surface texture can be estimated using
tactile sensors [5]. Furthremore, slip detection [6], hardness
estimation [7], and grasping of soft objects [8] are facilitated
by the sense of touch. However, finger coordination based
on tactile feedback is a complex control problem with high-
dimensional observation space, therefore several Deep RL
approaches have been explored [9], [10]. A crucial bot-
tleneck for applying RL to tactile-rich manipulation tasks
is the lack of stable and reliable contact simulation that
includes soft-body interaction and tactile sensing. Although
a number of simulators have appeared recently that aim to
remedy this issue [10]–[14], each simulator uses a different
physics engine, simulates a different tactile sensor, different
robot, and runs in a different robotics simulator altogether
– making comparison and interoperability challenging. To
address these issues, we develop TacEx – a novel tactile
simulation framework embedded in NVIDIA’s Isaac Sim [15]
and Isaac Lab [16], [17] that is modular, extensible, and
based on the latest advancements in tactile simulation. We
additionally integrate GIPC [18] for GPU-accelerated and
inversion-free simulation of soft-body contacts. By leverag-
ing Isaac Sim, we gain access to powerful features, such as
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Fig. 1. Overview of the TacEx Tactile Simulation Pipeline. First, the
simulation is initialized according to a given Sensor Configuration. Then
the physics are simulated using PhysX and GIPC, followed by the scene
rendering. Finally, the tactile sensor is simulated using the optical simulation
(Taxim) and marker simulation (FOTS), yielding a tactile RGB image and a
marker displacements field. After this, the physics are simulated again and
the process repeats.

photorealistic rendering, ROS support, and GPU-accelerated
physics simulation, and by integrating TacEx into Isaac Lab
– an extensible RL framework built on top of Isaac Sim – we
enable support for teleoperation, GPU-parallelized training,
and various RL libraries.

II. TACEX SIMULATION FRAMEWORK

In this section, we present TacEx – our modular frame-
work for tactile simulation (c.f., Fig. 1). We compare three
different approaches for simulating the physical behavior of
sensors and objects: i) PhysX to simulate the gelpad as a
rigid body with compliant contact; ii) PhysX FEM-based soft
body simulation for the gelpad; iii) GIPC [18] to simulate
the gelpad as a soft body. Since PhysX is the built-in physics
engine of Isaac Sim, baselines i) and ii) are straightforward
to implement by directly setting asset properties; for iii), we
modified the GIPC code and created Python bindings.

We integrate the GIPC simulation with Isaac Sim in
the following manner. Isaac Sim is used for scene setup,
robot simulation, and rendering. The gelpad is attached to
the sensor case and moves kinematically in response to
the robot’s motion, which is handled by PhysX. The non-
attached gelpad vertices are handled by GIPC: as the robot
moves in Isaac Sim, the sensor case moves and the attach-
ment points are recomputed, followed by a call to the GIPC
solver that computes new positions for the remaining gelpad
vertices and other GIPC-modeled objects. This enables the
gelpad and objects to move, deform, and interact dynamically
in Isaac Sim. For optical simulation, we use Taxim [11];
specifically, a GPU-accelerated implementation [19]. First,
we generate height maps with cameras in Isaac Sim and
smooth them with pyramid Gaussian kernels. Then we use
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Fig. 2. Simulation Showcases. We do a ball rolling experiment for testing
the simulation performance, and we further evaluate the capabalities of our
GIPC simulation by twisting and stretching a soft body beam and test how
well the gelpads can be used for lifting objects (see website for videos).

a polynomial lookup table to map the surface normals of
the height maps to RGB values. As a final step, we attach
shadows to the images. We further use the generated height
maps to simulate the marker motion with FOTS [20]. For
this, we compute the contact centers based on the height
maps and extract the z rotation of the objects relative to the
gelpads from Isaac Sim.

III. DEMONSTRATIONS AND EVALUATION

We showcase the behavior, capabilities, and limitations
of our framework in a series of experiments (visualized
in Fig. 3). First, a ball rolling experiment demonstrates a
contact-rich manipulation task with a single GelSight sensor.
Second, object lifting with two soft gelpads showcases robust
grasping capabilities. Third, the limits of GIPC simulation
are tested in a challenging beam twisting environment.
Subsequently, we implement three RL tasks: object pushing,
object lifting, and pole balancing – to demonstrate how
TacEx can be used within Isaac Lab for RL training.

We evaluate the simulation time of the optical simulation
Taxim/FOTS in Table I. Results for PhysX are presented in
Table II. The runtimes for soft-body GIPC simulation are
shown in Table III. We measure the average simulation time
per frame in ms for the physics simulation with GIPC during
the ball rolling experiment without tactile simulation.

TABLE I
TACTILE SIMULATION SPEED. AVERAGE SIMULATION TIME PER

FRAME IN ms FOR OPTICAL (RESOLUTION OF 480×640 ) AND FOR

MARKER SIMULATION (10×10 MARKERS) DURING CONTACT IN THE

BALL ROLLING EXPERIMENT WITH RIGID BODY GELPADS.

num envs height map gen optical sim marker sim
1 1.3718 5.9015 4.4863
2 0.8508 3.8886 2.8838
4 0.5988 3.0424 2.1184
8 0.4323 2.5773 1.7587

16 2.8827 5.7314 5.0450
18 3.5149 5.931 5.2343

IV. CONCLUSION AND FUTURE WORK

We presented TacEx – a novel framework for simulating
GelSight tactile sensors. The framework enables the usage
of GelSight Mini sensors for RL. It is built on top of
Isaac Sim and Isaac Lab, which gives the user access to a
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Fig. 3. RL environments. We implemented three environments in Isaac
Lab and trained policies to validate that our framework can be used
for Reinforcement Learning. In each environment, we used the marker
displacements from our tactile simulation. For training the RL policies, we
used PPO [21] as implemented in [22]. We have validated that the training
pipeline works, and we are currently working towards obtaining successful
policies that leverage tactile feedback.

TABLE II
PHYSX SIMULATION SPEED. AVERAGE SIMULATION TIME PER FRAME

IN ms FOR THE PHYSICS SIMULATION WITH PHYSX DURING THE BALL

ROLLING EXPERIMENT. THE SOFT BODY GELPAD HAS A MESH

RESOLUTION OF 10 AND USES 16 SOLVER ITERATIONS.

num envs 1 16 32 64 128
rigid 3.6930 0.2426 0.1286 0.0673 0.0361
soft 4.7069 0.4496 0.2718 0.1798 0.1267

TABLE III
GIPC SIMULATION SPEED. COMPARED TO THE BALL ROLLING

EXPERIMENTS WITH PHYSX, THE BALL HERE IS A SOFT BODY. WE USE

DIFFERENT MESH RESOLUTIONS FOR THE BALL TO MEASURE THE

PERFORMANCE W.R.T THE AMOUNT OF VERTICES AND TETRAHEDRA.

num vert num tetra GIPC
1029 3717 24.95 ms
7900 40370 110.47 ms
12509 66563 221.61 ms

wealth of features non-existent in current tactile simulators.
We designed the framework to be modular, extendable,
and easy to use by integrating multiple different simulation
approaches. The gelpad can either be simulated as a rigid
body with compliant contact, or as a soft body. For the
soft body simulation, one can use PhysX or our integration
of GIPC. To simulate the sensor output, we create height
maps with cameras in Isaac Sim and use the approach from
Taxim [11] for the optical and the one from FOTS [20] for
the marker simulation. We demonstrated framework features
and simulation behavior with multiple examples. We also
provide three environments for RL with tactile sensing.

Our tactile simulation, specifically the physics simulation
approaches, lacks experiments that investigate whether they
can be used for Sim2Real or not. Therefore, we aim to do
more quantitative experiments for comparing different tactile
simulation approaches, as well as Sim2Real experiments in
future works. We also plan to extend our framework to
include more RL environments and more tactile simulation
approaches with the goal of creating a benchmarking plat-
form for tactile simulators and algorithms for tactile sensing.
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